Research Article
BibTex RIS Cite
Year 2019, Volume: 66 Issue: 4, 397 - 405, 09.09.2019
https://doi.org/10.33988/auvfd.568339

Abstract

References

  • 1. Afonso AS, Uliana CV, Martucci DH, et al (2016): Simple and rapid fabrication of disposable carbon-based electrochemical cells using an electronic craft cutter for sensor and biosensor applications. Talanta, 146, 381–387.
  • 2. Altintas Z, Akgun M, Kokturk G, et al (2018): A fully automated microfluidic-based electrochemical sensor for real-time bacteria detection. Biosens Bioelectron, 100, 541-548.
  • 3. Azimi L, Alaghehbandan R, Asadian M, et al (2019): Multi-drug resistant Pseudomonas aeruginosa and Klebsiella pneumoniae ciculation in a burn hospital, Tehran, Iran. GMS Hyg Infect Control, 14, ISSN 2196-5226.
  • 4. Berrazeg M, Diene SM, Drissi M, et al (2013): Biotyping of multidrug- resistant Klebsiella pneumoniae clinical isolates from France and Algeria using MALDI-TOF MS. PLoS One, 8, e6142
  • 5. Brink AATP, Von Wintersdorff CJH, Van der Donk CFM, et al (2014): Development and validation of a single- tube multiple- locus variable number tandem repeat analysis for Klebsiella pneumoniae. PLoS One, 9, 3.
  • 6. Coşkun S, Altanlar N (2012): Detection of plasmid-mediated AmpC Beta-lactamase in clinical isolates of cefoxitin- resistant Escherichia coli and Klebsiella pneumoniae. Mikrobiyol Bul, 46, 375-385.
  • 7. Derakhshan S, Najar-Peerayeh S, Bakhshi B, et al (2016): Genotyping and characterization of CTX-M-15-producing Klebsiella pneumoniae isolated from an Iranian hospital. J Chemother, 28, 289–296.
  • 8. Domokos J, Damjanova I, Kristof K, et al (2019): Multiple benefits of plasmid-mediated quinolone resistance determinants in Klebsiella pneumoniae ST11 high-risk clone and recently Emerging ST307 Clone. Front Microbiol, 12, 157.
  • 9. Durmaz R, Otlu B, Koksal F, et al (2009): The optimization of a rapid pulsed-field gel electrophoresis protocol for the typing of Acinetobacter baumannii, Escherichia coli and Klebsiella spp. Jpn J Infect Dis, 62, 372-377.
  • 10. Gilbert GL (2008): Using MLVA to type strains of Salmonella Typhimurium in New South Wales. NSW Public Health Bulletin, 19, 29-31.
  • 11. Hu Y, Li B, Jin D et al (2013): Comparison of multiple- locus variable-number tandem-repeat analysis with pulsed-field gel electrophoresis typing of Acinetobacter baumannii in China. J Clin Microbiol, 51, 1263
  • 12. Karagoz A, Acar S, Körkoca H (2015): Characterization of Klebsiella isolates by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and determination of antimicrobial resistance with VITEK 2 advanced expert system (AES). Turk J Med Sci, 45, 1335-1344.
  • 13. Kumar D, Kumari SK (2013): Klebsiella: In drinking water. Int J Pharm Sci Invent, 12, 38-42.
  • 14. Kumar H, Bhawana (2015): Development of electrochemical biosensor for the detection of Klebsiella pneumoniae as biological weapon. Res J Chem Sci, 5, 88-97.
  • 15. Liu J, Yu J, Chen F, et al (2018): Emergence and establishment of KPC-2-producing ST11 Klebsiella pneumoniae in a general hospital in Shanghai, China. Eur J Clin Microbiol Infect Dis, 37, 293-299.
  • 16. Malachow N, Sabat A, Gniadkowski M, et al (2005): Comparison of multiple-locus variable-number tandem-repeat analysis with pulsed-field gel electrophoresis, spa typing, and multilocus sequence typing for clonal characterization of Staphylococcus aureus isolates. J Clin Microbiol, 43, 3095-3100.
  • 17. Marqu C, Belas A, Aboim C, et al (2019): Evidence of Klebsiella pneumoniae sharing between healthy companion animals and co-habiting humans. J Clin Microbiol, 57, e01537-18.
  • 18. Manji R, Bythrow M, Branda JA, et al (2014): Multi-center evaluation of the VITEK MS system for mass spectrometric identification of non-Enterobacteriaceae gram-negative bacilli. Eur J Clin Microbiol Infect Dis, 33, 337–346.
  • 19. McDougal LK, Steward CD, Killgore GE, et al (2003): Pulsed-field gel electrophoresis typing of oxacillin-resistant Staphylococcus aureus isolates from the United States: establishing a national database. J Clin Microbiol, 41, 5113–5120.
  • 20. Morris D, Boyle F, Morris C, et al (2012): Inter-hospital outbreak of Klebsiella pneumoniae producing KPC-2 carbapenemase in Ireland. J Antimicrob Chemother, 67, 2367–2372.
  • 21. Mulvey MR, Chui L, Ismail J, et al (2001): Development of a Canadian standardized protocol for subtyping methicillin-resistant Staphylococcus aureus using pulsed-field gel electrophoresis. J Clin Microbiol, 39, 3481–3485.
  • 22. Murchan S, Kaufmann ME, Deplano A, et al (2003): Harmonization of pulsed-field gel electrophoresis protocols for epidemiological typing of strains of methicillin-resistant Staphylococcus aureus: a single approach developed by consensus in 10 European laboratories and its application for tracing the spread of related strains. J Clin Microbiol, 41, 1574–1585.
  • 23. Oliveira Marques PRB, Lermo A, Campoy S, et al (2009): Double-tagging polymerase chain reaction with a thiolated primer and electrochemical genosensing based on gold nanocomposite sensor for food safety. Anal Chem, 81, 1332-1339.
  • 24. Ricci F, Volpe G, Micheli L, et al (2007): A review on novel developments and applications of immunosensors in food analysis. Analytica Chimica Acta, 605, 111-129.
  • 25. Savas S, Ersoy A, Gulmez Y, et al (2018): Nanoparticle enhanced antibody and DNA biosensors for sensitive detection of Salmonella. Materials, 11, 1541.
  • 26. Shriver-Lake LC, Erickson JS, Sapsford KE (2007): Blind laboratory trials for multiple pathogens in spiked food matrices. Anal Lett, 40, 3219-3231.
  • 27. Singhal N, Kumar M, Kanaujia PK, et al (2015): MALDI-TOF mass spectrometry: an emerging technolıgy for microbial identification and diagnosis. Front Microbiol, 791.
  • 28. Soni DK, Ahmad R, Dubey SK (2018): Biosensor for the detection of Listeria monocytogenes: emerging trends. Crit Rev in Microbiol, 44, 590-608.
  • 29. Swaminathan B, Feng P (1994): Rapid detection of food-borne pathogenic bacteria. Annu Rev Microbiol. 48, 401–426.
  • 30. Tenover FC, Arbeit RD, Goering RV, et al (1997): How to select and interpret molecular strain typing methods for epidemiological studies of bacterial infections: a review for healthcare epidemiologists. Molecular typing working group of the society for healthcare epidemiology of America. Infect Control Hosp Epidemiol, 18, 426-439.
  • 31. Torresi M, Acciari VA, Zennaro G, et al (2015): Comparison of multiple- locus variable number tandem repeat analysis and pulsed field gel electrophoresis in molecular subtyping of Listeria monocytogenes isolates from Italian cheese. Vet Ital, 51, 191-198.
  • 32. Turton JF, Perry C, Elgohari S, et al (2010): PCR characterization and typing of Klebsiella pneumoniae using capsular type-specific, variable number tandem repeat and virulence gene targets. J Med Microbiol, 59, 541-547.
  • 33. Zhang Z, Yu HW, Wan GC, et al (2017): A Label-free electrochemical bipsensor based on a reduced graphene oxide and ındole-5- carboxylic acid nanocomposite for the DNA detection of Klebsiella pneumoniae. J AOAC Int, 100, 548-552.
  • 34. Zhong W, Shou Y, Yoshida TM, et al (2007): Differentiation of Bacillus anthracis, B. cereus, and B. thuringiensis by using pulsed-field gel electrophoresis. Appl Environ Microbiol, 73, 3446-3449.

Rapid identification of Klebsiella pneumoniae isolates from various samples with biosensor and genotyping

Year 2019, Volume: 66 Issue: 4, 397 - 405, 09.09.2019
https://doi.org/10.33988/auvfd.568339

Abstract

The most
important cause of Klebsiella spp.
contamination of drinking water is the leakage of animal faeces into drinking
water sources. Recently, the biosensor technology has quickly begun to replace
other methods with its faster finding and reliability. The aim of this study
was to investigate the reliability of the biosensor technology in the rapid
detection of Klebsiella pneumoniae (K. pneumoniae) and to determine the
presence of the relationship between K.
pneumoniae
isolates isolated from the drinking water thought to be
contaminated by animal faeces and the clinical isolates. For this purpose,
portable, microfluidic electrochemical sensor device version 2 (V2) was used
for the detection of K. pneumoniae
and results were confirmed with VITEK MALDI-TOF Mass Spectrometry (VITEK MS)
automated system. For the molecular typing of K. pneumoniae isolates, pulsed-field gel electrophoresis (PFGE) and
multiple locus variable-number tandem repeat analysis (MLVA) methods were
employed and the results were compared. For these bacteria, the most appropriate
typing method was tried to be determined comparatively. PFGE analysis indicated
the presence of six different strains, while MLVA divided them into 23
clusters. Clonal relationships were viewed between environmental and clinical
isolates. The main goal of this paper is to present, the detailed report of the
comparison of the samples isolated from drinking water, animal and human faeces
for K. pneumoniae. To accomplish of
this goal we introduced that MLVA and PFGE methods. Also, gold nanoparticies
enhanced electrochemical biosensor device is used for the determination of K. pneumoniae for the first time.

References

  • 1. Afonso AS, Uliana CV, Martucci DH, et al (2016): Simple and rapid fabrication of disposable carbon-based electrochemical cells using an electronic craft cutter for sensor and biosensor applications. Talanta, 146, 381–387.
  • 2. Altintas Z, Akgun M, Kokturk G, et al (2018): A fully automated microfluidic-based electrochemical sensor for real-time bacteria detection. Biosens Bioelectron, 100, 541-548.
  • 3. Azimi L, Alaghehbandan R, Asadian M, et al (2019): Multi-drug resistant Pseudomonas aeruginosa and Klebsiella pneumoniae ciculation in a burn hospital, Tehran, Iran. GMS Hyg Infect Control, 14, ISSN 2196-5226.
  • 4. Berrazeg M, Diene SM, Drissi M, et al (2013): Biotyping of multidrug- resistant Klebsiella pneumoniae clinical isolates from France and Algeria using MALDI-TOF MS. PLoS One, 8, e6142
  • 5. Brink AATP, Von Wintersdorff CJH, Van der Donk CFM, et al (2014): Development and validation of a single- tube multiple- locus variable number tandem repeat analysis for Klebsiella pneumoniae. PLoS One, 9, 3.
  • 6. Coşkun S, Altanlar N (2012): Detection of plasmid-mediated AmpC Beta-lactamase in clinical isolates of cefoxitin- resistant Escherichia coli and Klebsiella pneumoniae. Mikrobiyol Bul, 46, 375-385.
  • 7. Derakhshan S, Najar-Peerayeh S, Bakhshi B, et al (2016): Genotyping and characterization of CTX-M-15-producing Klebsiella pneumoniae isolated from an Iranian hospital. J Chemother, 28, 289–296.
  • 8. Domokos J, Damjanova I, Kristof K, et al (2019): Multiple benefits of plasmid-mediated quinolone resistance determinants in Klebsiella pneumoniae ST11 high-risk clone and recently Emerging ST307 Clone. Front Microbiol, 12, 157.
  • 9. Durmaz R, Otlu B, Koksal F, et al (2009): The optimization of a rapid pulsed-field gel electrophoresis protocol for the typing of Acinetobacter baumannii, Escherichia coli and Klebsiella spp. Jpn J Infect Dis, 62, 372-377.
  • 10. Gilbert GL (2008): Using MLVA to type strains of Salmonella Typhimurium in New South Wales. NSW Public Health Bulletin, 19, 29-31.
  • 11. Hu Y, Li B, Jin D et al (2013): Comparison of multiple- locus variable-number tandem-repeat analysis with pulsed-field gel electrophoresis typing of Acinetobacter baumannii in China. J Clin Microbiol, 51, 1263
  • 12. Karagoz A, Acar S, Körkoca H (2015): Characterization of Klebsiella isolates by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and determination of antimicrobial resistance with VITEK 2 advanced expert system (AES). Turk J Med Sci, 45, 1335-1344.
  • 13. Kumar D, Kumari SK (2013): Klebsiella: In drinking water. Int J Pharm Sci Invent, 12, 38-42.
  • 14. Kumar H, Bhawana (2015): Development of electrochemical biosensor for the detection of Klebsiella pneumoniae as biological weapon. Res J Chem Sci, 5, 88-97.
  • 15. Liu J, Yu J, Chen F, et al (2018): Emergence and establishment of KPC-2-producing ST11 Klebsiella pneumoniae in a general hospital in Shanghai, China. Eur J Clin Microbiol Infect Dis, 37, 293-299.
  • 16. Malachow N, Sabat A, Gniadkowski M, et al (2005): Comparison of multiple-locus variable-number tandem-repeat analysis with pulsed-field gel electrophoresis, spa typing, and multilocus sequence typing for clonal characterization of Staphylococcus aureus isolates. J Clin Microbiol, 43, 3095-3100.
  • 17. Marqu C, Belas A, Aboim C, et al (2019): Evidence of Klebsiella pneumoniae sharing between healthy companion animals and co-habiting humans. J Clin Microbiol, 57, e01537-18.
  • 18. Manji R, Bythrow M, Branda JA, et al (2014): Multi-center evaluation of the VITEK MS system for mass spectrometric identification of non-Enterobacteriaceae gram-negative bacilli. Eur J Clin Microbiol Infect Dis, 33, 337–346.
  • 19. McDougal LK, Steward CD, Killgore GE, et al (2003): Pulsed-field gel electrophoresis typing of oxacillin-resistant Staphylococcus aureus isolates from the United States: establishing a national database. J Clin Microbiol, 41, 5113–5120.
  • 20. Morris D, Boyle F, Morris C, et al (2012): Inter-hospital outbreak of Klebsiella pneumoniae producing KPC-2 carbapenemase in Ireland. J Antimicrob Chemother, 67, 2367–2372.
  • 21. Mulvey MR, Chui L, Ismail J, et al (2001): Development of a Canadian standardized protocol for subtyping methicillin-resistant Staphylococcus aureus using pulsed-field gel electrophoresis. J Clin Microbiol, 39, 3481–3485.
  • 22. Murchan S, Kaufmann ME, Deplano A, et al (2003): Harmonization of pulsed-field gel electrophoresis protocols for epidemiological typing of strains of methicillin-resistant Staphylococcus aureus: a single approach developed by consensus in 10 European laboratories and its application for tracing the spread of related strains. J Clin Microbiol, 41, 1574–1585.
  • 23. Oliveira Marques PRB, Lermo A, Campoy S, et al (2009): Double-tagging polymerase chain reaction with a thiolated primer and electrochemical genosensing based on gold nanocomposite sensor for food safety. Anal Chem, 81, 1332-1339.
  • 24. Ricci F, Volpe G, Micheli L, et al (2007): A review on novel developments and applications of immunosensors in food analysis. Analytica Chimica Acta, 605, 111-129.
  • 25. Savas S, Ersoy A, Gulmez Y, et al (2018): Nanoparticle enhanced antibody and DNA biosensors for sensitive detection of Salmonella. Materials, 11, 1541.
  • 26. Shriver-Lake LC, Erickson JS, Sapsford KE (2007): Blind laboratory trials for multiple pathogens in spiked food matrices. Anal Lett, 40, 3219-3231.
  • 27. Singhal N, Kumar M, Kanaujia PK, et al (2015): MALDI-TOF mass spectrometry: an emerging technolıgy for microbial identification and diagnosis. Front Microbiol, 791.
  • 28. Soni DK, Ahmad R, Dubey SK (2018): Biosensor for the detection of Listeria monocytogenes: emerging trends. Crit Rev in Microbiol, 44, 590-608.
  • 29. Swaminathan B, Feng P (1994): Rapid detection of food-borne pathogenic bacteria. Annu Rev Microbiol. 48, 401–426.
  • 30. Tenover FC, Arbeit RD, Goering RV, et al (1997): How to select and interpret molecular strain typing methods for epidemiological studies of bacterial infections: a review for healthcare epidemiologists. Molecular typing working group of the society for healthcare epidemiology of America. Infect Control Hosp Epidemiol, 18, 426-439.
  • 31. Torresi M, Acciari VA, Zennaro G, et al (2015): Comparison of multiple- locus variable number tandem repeat analysis and pulsed field gel electrophoresis in molecular subtyping of Listeria monocytogenes isolates from Italian cheese. Vet Ital, 51, 191-198.
  • 32. Turton JF, Perry C, Elgohari S, et al (2010): PCR characterization and typing of Klebsiella pneumoniae using capsular type-specific, variable number tandem repeat and virulence gene targets. J Med Microbiol, 59, 541-547.
  • 33. Zhang Z, Yu HW, Wan GC, et al (2017): A Label-free electrochemical bipsensor based on a reduced graphene oxide and ındole-5- carboxylic acid nanocomposite for the DNA detection of Klebsiella pneumoniae. J AOAC Int, 100, 548-552.
  • 34. Zhong W, Shou Y, Yoshida TM, et al (2007): Differentiation of Bacillus anthracis, B. cereus, and B. thuringiensis by using pulsed-field gel electrophoresis. Appl Environ Microbiol, 73, 3446-3449.
There are 34 citations in total.

Details

Primary Language English
Subjects Veterinary Surgery
Journal Section Articles
Authors

Sümeyra Savaş 0000-0001-5057-9178

Publication Date September 9, 2019
Published in Issue Year 2019Volume: 66 Issue: 4

Cite

APA Savaş, S. (2019). Rapid identification of Klebsiella pneumoniae isolates from various samples with biosensor and genotyping. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 66(4), 397-405. https://doi.org/10.33988/auvfd.568339
AMA Savaş S. Rapid identification of Klebsiella pneumoniae isolates from various samples with biosensor and genotyping. Ankara Univ Vet Fak Derg. September 2019;66(4):397-405. doi:10.33988/auvfd.568339
Chicago Savaş, Sümeyra. “Rapid Identification of Klebsiella Pneumoniae Isolates from Various Samples With Biosensor and Genotyping”. Ankara Üniversitesi Veteriner Fakültesi Dergisi 66, no. 4 (September 2019): 397-405. https://doi.org/10.33988/auvfd.568339.
EndNote Savaş S (September 1, 2019) Rapid identification of Klebsiella pneumoniae isolates from various samples with biosensor and genotyping. Ankara Üniversitesi Veteriner Fakültesi Dergisi 66 4 397–405.
IEEE S. Savaş, “Rapid identification of Klebsiella pneumoniae isolates from various samples with biosensor and genotyping”, Ankara Univ Vet Fak Derg, vol. 66, no. 4, pp. 397–405, 2019, doi: 10.33988/auvfd.568339.
ISNAD Savaş, Sümeyra. “Rapid Identification of Klebsiella Pneumoniae Isolates from Various Samples With Biosensor and Genotyping”. Ankara Üniversitesi Veteriner Fakültesi Dergisi 66/4 (September 2019), 397-405. https://doi.org/10.33988/auvfd.568339.
JAMA Savaş S. Rapid identification of Klebsiella pneumoniae isolates from various samples with biosensor and genotyping. Ankara Univ Vet Fak Derg. 2019;66:397–405.
MLA Savaş, Sümeyra. “Rapid Identification of Klebsiella Pneumoniae Isolates from Various Samples With Biosensor and Genotyping”. Ankara Üniversitesi Veteriner Fakültesi Dergisi, vol. 66, no. 4, 2019, pp. 397-05, doi:10.33988/auvfd.568339.
Vancouver Savaş S. Rapid identification of Klebsiella pneumoniae isolates from various samples with biosensor and genotyping. Ankara Univ Vet Fak Derg. 2019;66(4):397-405.