Research Article
BibTex RIS Cite
Year 2020, Volume: 67 Issue: 3, 215 - 220, 03.06.2020
https://doi.org/10.33988/auvfd.539572

Abstract

References

  • 1. Ahmed HA, El-Hofy FI, Shafik SM, et al (2016): Characterization of virulence-associated genes antimicrobial resistance genes, and class 1 integrons in Salmonella enterica Serovar Typhimurium isolates from chicken meat and humans in Egypt. Foodborne Pathog Dis, 13, 281-288.
  • 2. Alcaide E, Martinez JP, Garay E (1983): Comperative study on Salmonella isolation from sewage contaminated natural waters. J Appl Microbiol, 56, 365-371.
  • 3. Chiu CH, Ou JT (1996): Rapid identification of Salmonella serovars in feces by specific detection of virulence genes, invA and spvC, by an enrichment broth culture-multiplex PCR combination assay. J Clin Microbiol, 34, 2619-2622.
  • 4. Chuanchuen R, Ajariyakhajorn K, Koowatananukul C, et al (2010): Antimicrobial resistance and virulence genes in Salmonella enterica isolated from dairy cows. Foodborne Pathog Dis, 7, 63-69.
  • 5. Clinical and Laboratory Standards Institute (2015): Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals; Informational Supplement 3rd ed. CLSI supplement Vet-01S, Wayne, PA
  • 6. Clinical and Laboratory Standards Institute (2016): Performance Standards for Antimicrobial Susceptibility Testing. 26th ed. CLSI supplement M100S. Wayne, PA
  • 7. Dakman A, Yapıcıer Şahan Ö, Yaşarer A, et al (2017): First isolation of Salmonella Hessarek from Sturnus vulgaris in Turkey: A case report. Kafkas Univ Vet Fak Derg, 23, 343-346.
  • 8. Das A, Hari SS, Shalini U, et al (2012): Molecular screening of virulence genes from Salmonella enterica isolated from commercial food stuffs. Biosci Biotech Res Asia, 9, 363-369.
  • 9. Donkersgoed JV, Graham T, Gannon V (1999): The prevalence of verotoxins, Escherichia coli O157:H7, and Salmonella in the feces and rumen of cattle at processing. Can Vet J, 40, 332-338.
  • 10. Duffy G, Cloak OM, O’Sulivan MG, et al (1999): The incidence and antibiotic resistance profiles of Salmonella spp. on Irish retail meat products. Food Microbiol, 16, 623-631.
  • 11. Eyigor A, Carli KT, Unal CB (2002): Implementation of real-time PCR to Tetrathionate Broth enrichment step of Salmonella detection in poultry. Lett Appl Microbiol, 34, 37-41.
  • 12. Fluckey WM, Loneragan WG, Warner R, et al (2007): Antimicrobial drug resistance of Salmonella and Escherichia coli isolates from cattle feces, hides and carcasses, J Food Prot, 70, 551-556.
  • 13. Guerra B, Soto SM, Argüelles JM, et al (2001): Multidrug resistance is mediated by large plasmids carrying a class 1 integron in the emergent Salmonella enterica Serotype [4, 5, 12: i:-]. Antimicrob Agents Chemother, 45, 1305-1308.
  • 14. Güleşen R, Levent B, Sevindi DF, et al (2010): 2010 yılında serotiplendirilen Salmonella suşlarının değerlendirilmesi. Available at: http://www. Tmc-online.org/userfiles/sunumlar/10 Kas/SB-16.pdf (Accessed February 02,2018)
  • 15. Jensen AN, Sorensen G, Baggesen DL, et al (2003): Addition of Novobiocin in pre-enrichment step can improve Salmonella culture protocol of modified semisolid Rappaport-Vassiliadis. J Microbiol Methods, 55, 249-255.
  • 16. McEvoy JM, Doherty AM, Sheridan JJ, et al (2003): The prevalence of Salmonella spp. in bovine faecal, rumen and carcass samples at a commercial abattoir. J Appl Microbiol, 94, 693-700.
  • 17. Murinda SE, Nguyen LT, Nam HM, et al (2004): Detection of sorbitol-negative and sorbitol–positive shiga toxin-producing Escherichia coli, Listeria monocytogenes, Campylobacter jejuni, and Salmonella spp. in dairy farm environmental samples. Foodborne Pathog Dis, 1, 97-103.
  • 18. Murugkar HV, Rahman H, Dutta PK (2003): Distribution of virulence genes in Salmonella serovars isolated from man and animals. Indian J Med Res, 117, 66-70
  • 19. Notingham PM, Urselman AJ (1961): Salmonella infection in calves and other animals. New Zeal J Agr Res, 4, 449-460.
  • 20. Oliveira SD, Rodenbusch CR, Ce MC, et al (2003): Evaluation of selective and non-selective enrichment PCR procedures for Salmonella detection. Lett Appl Microbiol, 36, 217-221.
  • 21. Özsan K, Aksoycan N, Fazlı A, et al (1971): Memleketimizde ilk defa tespit edilen S. Berta, S. Lindenburg ve S. San-Diego serotipleri. Mikrobiyol Bul, 5, 128-130.
  • 22. Palmera-Suarez R, Garcia P, Garcia A, et al (2007): Salmonella Kottbus outbreak in infants in Gran Canaria (Spain), caused by bottled water, August – November 2006. Euro Surveill, 12, 3235.
  • 23. Pangoli P, Dje Y, Ahmed O, et al (2008): Seasonal incidence and moleculer characterization of Salmonella from dairy cows, calves and farm environment. Foodborne Pathog Dis, 5, 87-96.
  • 24. Retamal P, Castillo-Ruiz M, Mora GC (2009): Characterization of mgtC, a virulance factor of Salmonella enterica serovar Typhi. Plos One, 4, e5551.
  • 25. Sanchez-Jimenez MM, Cardona-Castro N, Canu N, et al (2010): Distribution of pathogenicity islands among Colombian isolates of Salmonella. J Infec Dev Ctries, 4, 555-559.
  • 26. Soto SM, Rodriquez I, Rodicio MR, et al (2006): Detection of virulence determinants in clinical strains of Salmonella enterica serovar enteritidis and mapping on macrorestriction profiles. J Med Microbiol, 55, 365-373.
  • 27. Toboldt A, Tietze E, Helmuth R, et al (2014): Molecular epidemiology of Salmonella enterica serovar Kottbus isolated in Germany from humans, food and animals. Vet Microbiol, 170, 97-108.
  • 28. Töreci K, Erdem B, Öngen B (2013): Türkiye’de 2011 yılı sonuna kadar izolasyonu bildirilen Salmonella serovarları. Mikrobiyol Bul, 47, 442-460.
  • 29. Warnick LD, Kaneene JB, Ruegg PL, et al (2003): Evaluation of herd sampling for Salmonella isolation on Midwest and Northeast US dairy farms. Prev Vet Med, 60, 195-206.
  • 30. Wells SJ, Fedorka-Cray PJ, Dargatz DA (2001): Fecal shedding of Salmonella spp. by dairy cows on farm and at cull cow markets. J Food Protec, 64, 3-11.
  • 31. WHO (2010): Laboratory protocol: Isolation of Salmonella spp. from food and animal faeces. Available at: http://antimicrobialresistance.dk/CustomerData/Files/Folders/6-pdf-protocols/63_18-05-isolation-of-salm-220610.pdf (Accessed December 23, 2019)
  • 32. WHO (2010): Laboratory protocol: Biochemical Identification of Salmonella and Shigella using an abbreviated panel of tests. Available at: https://www.researchgate.net/publication/242575055_Biochemical_identification_of_Salmonella_and_Shigella_Using_an_Abbreviated_Panel_of_Tests (Accessed December 23, 2019)

Distribution of Salmonella serovars and characterization of isolates in cattle feces and environmental samples

Year 2020, Volume: 67 Issue: 3, 215 - 220, 03.06.2020
https://doi.org/10.33988/auvfd.539572

Abstract

In this study, it was aimed to identify the presence of Salmonella serovars, and investigate the antibiotic susceptibility of isolates and the presence of certain virulence factors in the samples collected from cattle feces and environmental samples. Fecal and environmental swab samples were regularly collected from five different dairy cattle farms for a period of one year, once in each season. Totally, 425 fecal samples from animals, 21 of which had diarrhea and 400 environmental samples were examined for Salmonella spp.. While no Salmonella spp. was isolated from the environmental samples, Salmonella spp. was isolated from three (0.36%) of the fecal samples. All isolates were isolated from a single farm and they were sampled in autumn. Two strains were serotyped as S. Kottbus and the other as S. Lindenburg. All serovars were found to be sulfamethoxazole-resistant, while susceptible to cefoxitin, nalidixic acid, trimethoprim-sulfamethoxazole, enrofloxacin, ciprofloxacin, ceftriaxone, ceftiofur and amoxicillin-clavulanic acid. While mgtC, misL and invA were detected in all isolates, no pefA was detected. stn was detected in S. Lindenburg and one of S. Kottbus, whereas the spvA was detected only in S. Lindenburg. Presence of isolation only in one of the five farms and the low isolation rates were associated with a good level of biosecurity measures in the area where the study was conducted. Salmonella spp. isolation from healthy animals apart from animals with diarrhea was found to be important in terms of the role that persistently infected animals can play in the spread of the agent. 

References

  • 1. Ahmed HA, El-Hofy FI, Shafik SM, et al (2016): Characterization of virulence-associated genes antimicrobial resistance genes, and class 1 integrons in Salmonella enterica Serovar Typhimurium isolates from chicken meat and humans in Egypt. Foodborne Pathog Dis, 13, 281-288.
  • 2. Alcaide E, Martinez JP, Garay E (1983): Comperative study on Salmonella isolation from sewage contaminated natural waters. J Appl Microbiol, 56, 365-371.
  • 3. Chiu CH, Ou JT (1996): Rapid identification of Salmonella serovars in feces by specific detection of virulence genes, invA and spvC, by an enrichment broth culture-multiplex PCR combination assay. J Clin Microbiol, 34, 2619-2622.
  • 4. Chuanchuen R, Ajariyakhajorn K, Koowatananukul C, et al (2010): Antimicrobial resistance and virulence genes in Salmonella enterica isolated from dairy cows. Foodborne Pathog Dis, 7, 63-69.
  • 5. Clinical and Laboratory Standards Institute (2015): Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals; Informational Supplement 3rd ed. CLSI supplement Vet-01S, Wayne, PA
  • 6. Clinical and Laboratory Standards Institute (2016): Performance Standards for Antimicrobial Susceptibility Testing. 26th ed. CLSI supplement M100S. Wayne, PA
  • 7. Dakman A, Yapıcıer Şahan Ö, Yaşarer A, et al (2017): First isolation of Salmonella Hessarek from Sturnus vulgaris in Turkey: A case report. Kafkas Univ Vet Fak Derg, 23, 343-346.
  • 8. Das A, Hari SS, Shalini U, et al (2012): Molecular screening of virulence genes from Salmonella enterica isolated from commercial food stuffs. Biosci Biotech Res Asia, 9, 363-369.
  • 9. Donkersgoed JV, Graham T, Gannon V (1999): The prevalence of verotoxins, Escherichia coli O157:H7, and Salmonella in the feces and rumen of cattle at processing. Can Vet J, 40, 332-338.
  • 10. Duffy G, Cloak OM, O’Sulivan MG, et al (1999): The incidence and antibiotic resistance profiles of Salmonella spp. on Irish retail meat products. Food Microbiol, 16, 623-631.
  • 11. Eyigor A, Carli KT, Unal CB (2002): Implementation of real-time PCR to Tetrathionate Broth enrichment step of Salmonella detection in poultry. Lett Appl Microbiol, 34, 37-41.
  • 12. Fluckey WM, Loneragan WG, Warner R, et al (2007): Antimicrobial drug resistance of Salmonella and Escherichia coli isolates from cattle feces, hides and carcasses, J Food Prot, 70, 551-556.
  • 13. Guerra B, Soto SM, Argüelles JM, et al (2001): Multidrug resistance is mediated by large plasmids carrying a class 1 integron in the emergent Salmonella enterica Serotype [4, 5, 12: i:-]. Antimicrob Agents Chemother, 45, 1305-1308.
  • 14. Güleşen R, Levent B, Sevindi DF, et al (2010): 2010 yılında serotiplendirilen Salmonella suşlarının değerlendirilmesi. Available at: http://www. Tmc-online.org/userfiles/sunumlar/10 Kas/SB-16.pdf (Accessed February 02,2018)
  • 15. Jensen AN, Sorensen G, Baggesen DL, et al (2003): Addition of Novobiocin in pre-enrichment step can improve Salmonella culture protocol of modified semisolid Rappaport-Vassiliadis. J Microbiol Methods, 55, 249-255.
  • 16. McEvoy JM, Doherty AM, Sheridan JJ, et al (2003): The prevalence of Salmonella spp. in bovine faecal, rumen and carcass samples at a commercial abattoir. J Appl Microbiol, 94, 693-700.
  • 17. Murinda SE, Nguyen LT, Nam HM, et al (2004): Detection of sorbitol-negative and sorbitol–positive shiga toxin-producing Escherichia coli, Listeria monocytogenes, Campylobacter jejuni, and Salmonella spp. in dairy farm environmental samples. Foodborne Pathog Dis, 1, 97-103.
  • 18. Murugkar HV, Rahman H, Dutta PK (2003): Distribution of virulence genes in Salmonella serovars isolated from man and animals. Indian J Med Res, 117, 66-70
  • 19. Notingham PM, Urselman AJ (1961): Salmonella infection in calves and other animals. New Zeal J Agr Res, 4, 449-460.
  • 20. Oliveira SD, Rodenbusch CR, Ce MC, et al (2003): Evaluation of selective and non-selective enrichment PCR procedures for Salmonella detection. Lett Appl Microbiol, 36, 217-221.
  • 21. Özsan K, Aksoycan N, Fazlı A, et al (1971): Memleketimizde ilk defa tespit edilen S. Berta, S. Lindenburg ve S. San-Diego serotipleri. Mikrobiyol Bul, 5, 128-130.
  • 22. Palmera-Suarez R, Garcia P, Garcia A, et al (2007): Salmonella Kottbus outbreak in infants in Gran Canaria (Spain), caused by bottled water, August – November 2006. Euro Surveill, 12, 3235.
  • 23. Pangoli P, Dje Y, Ahmed O, et al (2008): Seasonal incidence and moleculer characterization of Salmonella from dairy cows, calves and farm environment. Foodborne Pathog Dis, 5, 87-96.
  • 24. Retamal P, Castillo-Ruiz M, Mora GC (2009): Characterization of mgtC, a virulance factor of Salmonella enterica serovar Typhi. Plos One, 4, e5551.
  • 25. Sanchez-Jimenez MM, Cardona-Castro N, Canu N, et al (2010): Distribution of pathogenicity islands among Colombian isolates of Salmonella. J Infec Dev Ctries, 4, 555-559.
  • 26. Soto SM, Rodriquez I, Rodicio MR, et al (2006): Detection of virulence determinants in clinical strains of Salmonella enterica serovar enteritidis and mapping on macrorestriction profiles. J Med Microbiol, 55, 365-373.
  • 27. Toboldt A, Tietze E, Helmuth R, et al (2014): Molecular epidemiology of Salmonella enterica serovar Kottbus isolated in Germany from humans, food and animals. Vet Microbiol, 170, 97-108.
  • 28. Töreci K, Erdem B, Öngen B (2013): Türkiye’de 2011 yılı sonuna kadar izolasyonu bildirilen Salmonella serovarları. Mikrobiyol Bul, 47, 442-460.
  • 29. Warnick LD, Kaneene JB, Ruegg PL, et al (2003): Evaluation of herd sampling for Salmonella isolation on Midwest and Northeast US dairy farms. Prev Vet Med, 60, 195-206.
  • 30. Wells SJ, Fedorka-Cray PJ, Dargatz DA (2001): Fecal shedding of Salmonella spp. by dairy cows on farm and at cull cow markets. J Food Protec, 64, 3-11.
  • 31. WHO (2010): Laboratory protocol: Isolation of Salmonella spp. from food and animal faeces. Available at: http://antimicrobialresistance.dk/CustomerData/Files/Folders/6-pdf-protocols/63_18-05-isolation-of-salm-220610.pdf (Accessed December 23, 2019)
  • 32. WHO (2010): Laboratory protocol: Biochemical Identification of Salmonella and Shigella using an abbreviated panel of tests. Available at: https://www.researchgate.net/publication/242575055_Biochemical_identification_of_Salmonella_and_Shigella_Using_an_Abbreviated_Panel_of_Tests (Accessed December 23, 2019)
There are 32 citations in total.

Details

Primary Language English
Subjects Veterinary Surgery
Journal Section Research Article
Authors

Melih Çakin 0000-0002-9145-1338

Beren Başaran Kahraman 0000-0002-1736-093X

Belgi Diren Sığırcı 0000-0001-7153-7428

Arzu Funda Bağcıgil 0000-0002-8838-7291

Publication Date June 3, 2020
Published in Issue Year 2020Volume: 67 Issue: 3

Cite

APA Çakin, M., Başaran Kahraman, B., Diren Sığırcı, B., Bağcıgil, A. F. (2020). Distribution of Salmonella serovars and characterization of isolates in cattle feces and environmental samples. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 67(3), 215-220. https://doi.org/10.33988/auvfd.539572
AMA Çakin M, Başaran Kahraman B, Diren Sığırcı B, Bağcıgil AF. Distribution of Salmonella serovars and characterization of isolates in cattle feces and environmental samples. Ankara Univ Vet Fak Derg. June 2020;67(3):215-220. doi:10.33988/auvfd.539572
Chicago Çakin, Melih, Beren Başaran Kahraman, Belgi Diren Sığırcı, and Arzu Funda Bağcıgil. “Distribution of Salmonella Serovars and Characterization of Isolates in Cattle Feces and Environmental Samples”. Ankara Üniversitesi Veteriner Fakültesi Dergisi 67, no. 3 (June 2020): 215-20. https://doi.org/10.33988/auvfd.539572.
EndNote Çakin M, Başaran Kahraman B, Diren Sığırcı B, Bağcıgil AF (June 1, 2020) Distribution of Salmonella serovars and characterization of isolates in cattle feces and environmental samples. Ankara Üniversitesi Veteriner Fakültesi Dergisi 67 3 215–220.
IEEE M. Çakin, B. Başaran Kahraman, B. Diren Sığırcı, and A. F. Bağcıgil, “Distribution of Salmonella serovars and characterization of isolates in cattle feces and environmental samples”, Ankara Univ Vet Fak Derg, vol. 67, no. 3, pp. 215–220, 2020, doi: 10.33988/auvfd.539572.
ISNAD Çakin, Melih et al. “Distribution of Salmonella Serovars and Characterization of Isolates in Cattle Feces and Environmental Samples”. Ankara Üniversitesi Veteriner Fakültesi Dergisi 67/3 (June 2020), 215-220. https://doi.org/10.33988/auvfd.539572.
JAMA Çakin M, Başaran Kahraman B, Diren Sığırcı B, Bağcıgil AF. Distribution of Salmonella serovars and characterization of isolates in cattle feces and environmental samples. Ankara Univ Vet Fak Derg. 2020;67:215–220.
MLA Çakin, Melih et al. “Distribution of Salmonella Serovars and Characterization of Isolates in Cattle Feces and Environmental Samples”. Ankara Üniversitesi Veteriner Fakültesi Dergisi, vol. 67, no. 3, 2020, pp. 215-20, doi:10.33988/auvfd.539572.
Vancouver Çakin M, Başaran Kahraman B, Diren Sığırcı B, Bağcıgil AF. Distribution of Salmonella serovars and characterization of isolates in cattle feces and environmental samples. Ankara Univ Vet Fak Derg. 2020;67(3):215-20.