Research Article
BibTex RIS Cite
Year 2020, Volume: 67 Issue: 3, 221 - 225, 03.06.2020
https://doi.org/10.33988/auvfd.570933

Abstract

References

  • 1. Almeida CMR, Mucha A, Vasonce Los MCSD (2004): Influence of the sea rush juncus maritimus on metal concentration and speciation in estuarine sediment colonized by the plant. Environ Sci Technol, 38, 3112-3118.
  • 2. Anike FN, Yusuf M, Isikhuemhen OS (2016): Co-Substrating of peanut shells with cornstalks enhances biodegradation by pleurotus ostreatus. J Bioremed Biodeg, 7, 327-334.
  • 3. Bonanno G (2011): Micro minerals accumulation and distribution in the organs of Phragmitesaustralis (common reed) and biomonitoring applications. Ecotoxicol Environ Saf, 74, 1057–1064.
  • 4. Bonanno G (2013): Comparative performance of micro minerals bioaccumulation and biomonitoringin the plant species Typha domingensis, Phragmites australis and Arundo donax. Ecotoxicol Environ Saf, 97, 124–130.
  • 5. Bonanno G, Vymazal J, Cirelli GR (2018): Translocation, accumulation and bioindication of trace elements in wetland plants. Sci of the Total Environ, 631–632, 252–261.
  • 6. Cacador I, Vale C, Catarino F (2000): Seasonal variation of Zn, Pb, Cu and Cd concentrations in the root sediment system of Spartina maritime and Halimione portulacoides from Tagus estuary salt marshes. Mar Environ Res, 49, 279-290.
  • 7. Cetinkaya N, Erdem F (2015): Effects of different Juncus acutus: maise silage ratios on digestibility and rumen cellulolytic bacteria. Kafkas Univ Vet Fak Derg, 21, 499-505.
  • 8. Ceylan S, Yoldas F, Elmacı O, et al (2016): Effect of green manure on yield and mineral nutrient content of pumpkin grown in sandy loam soil. Ege Üniv Ziraat Fak Derg, 53, 75-381.
  • 9. Engin MS, Uyanık A, Cay S (2017): Investigation of micro metals distribution in water, sediments and wetland plants of Kızılırmak Delta, Turkey. Int J Sed Res, 32, 90–97.
  • 10. Erdem F (2014): Determination the digestibility of Juncus acutusby in-vıtro gas production and its effect on ruminal cellulolytic bacteria by real-time PCR methods. PhD Thesis, Ondokuz Mayıs University, Graduate School of Health Sciences, Samsun.
  • 11. Erdem F, Cetinkaya N (2016): Digestibility of Juncus acutus and its effects on ruminal cellulolytic bacteria. Italian J Agric Sci, 15, 69-75.
  • 12. Erdem F, Cetinkaya N, Nisbet C, et al (2015): Estimation organic matter digestibility, metabolisable energy, phenolic compounds and antioxidant activity of stem and seed of Juncus acutus plant for ruminants. South African J Anim Sci, 45, 502-509.
  • 13. Feedipedia (2017) Animal Feed Resources Information System INRA CIRAD AFZ and FAO. Available at http://www.feedipedia.org/node/12167. (Accessed February 12, 2019).
  • 14. Gursoy E, Muhlis M (2017): Determination of mineral contents of some legume and cereal forages grown as naturally in pastures of Erzurum province. Alinteri J Agric Sci, 32 (1), 1-9.
  • 15. Hosseini Alhashemi AS, Karbassi AR, Hassanzadeh Kiabi B, et al (2011): Bioaccumulation of micro minerals in trophic levels of wetland plants and waterfowl birds. Biol Micro Elem Res, 142, 500-516.
  • 16. Jamnıcká G, Hrivnák R, Oťaheľová H, et al (2006): Heavy metals content in aquatic plant species from some aquatic biotopes in Slovakia. 336-370. In: Proocedings of 36th Internat Conf of IAD. Austrian Committee Danube Research/IAD.
  • 17. Judson GJ, Mcfarlane JD (1998): Mineral disorders in grazing livestock and the usefulness of soil and plant analysis in the assessment of these disorders. Aust J Experi Agric, 38, 707-723.
  • 18. Kuniyal JC, Sharma M, Chand K, et al (2015): Water soluble ionic components in particulate matter (PM10) during high pollution episode days at Mohal and Kothi in the North-Western Himalaya, India. Aerosol Aır Qual Res, 15, 529–543.
  • 19. Mcdowell LR, Conrad JH, Ellis GL, et al (1983): Minerals for grazing ruminants in tropical regions. Extension bulletin 1149, Animal Science Department, University of Florida, Gainesville.
  • 20. Medas D, De Giudici G, Pusceddu C, et al (2019): Impact of Zn excess on biomineralization processes in Juncus acutus grown in mine polluted sites. J Hazard Mater, 370, 98-107.
  • 21. Milic D, Lukovic J, Ninkov J, et al (2012): Heavy metal content in halophytic plants from inland and maritime saline areas. Cent Eur J Biol, 7, 307-317.
  • 22. Miller RO (1998): Microwave digestion of plant tissue in a closed vessel. 69-73. In, Kalra YP(Ed): Handbook of reference methods for plant analysis. CRC Press, New York.
  • 23. Minson DJ (1990): Forage in ruminants. Academic Press Inc. San Diego, California, USA.
  • 24. SAS (2007): SAS Statistic Software, SAS Campus Drive. Cary NC, USA.
  • 25. Singh N, Kaur M, Kaur Katnoria J (2017): Analaysis on biaccumulaton of metals in aquatic environment od Beas River Basin: Acase study from Kanjli wetland. Geo Health, 1, 93-105.
  • 26. Sousa AI, Cacador I, Lillebø AI, et al (2008): Heavy metal accumulation in Halimione portulacoides: Intra- and extra-cellular metal binding sites. Chemosphere, 70, 850-857.
  • 27. Sundby B, Vale C, Caçador I, et al (1998): Metal-rich concretions on the roots of salt marsh plants: Mechanism and rate of formation. Limnol Oceanogr, 43, 245-252.
  • 28. Teuchies J, Jacobs S, Oosterlee L, et al (2013): Role of plants in metal cycling in a tidal wetland: Implications for phytoremidiation. Sci Total Environ, 445–446, 146–154.
  • 29. Vodyanitskii YN, Shoba SA (2015): Biogeochemistry of carbon, iron, and heavy metals in wetlands (analytical review). Moscow Univ Soil Sci Bull, 70, 89–97.
  • 30. Windham L, Weis JS, Weise P (2003): Uptake and distribution of metals in two dominant salt marsh macrophytes, Spartina alternifolia (cordgrass) and Phragmites australis (common reed). Mar Environ Res, 56, 63-72.
  • 31. Yabanlı M, Yozukmaz A, Sel F (2014): Heavy Metal accumulation in the leaves, stem and root of the invasive submerged macrophyte Myriophyllum spicatum L. (Haloragaceae): An Example of Kadın Creek (Mugla, Turkey). Braz Arch Biol Technol, 57, 434-440.

Determination of mineral concentrations in stem and seed of Juncus acutus

Year 2020, Volume: 67 Issue: 3, 221 - 225, 03.06.2020
https://doi.org/10.33988/auvfd.570933

Abstract

The objective of this study was to determine micro and macro mineral concentrations in stem and seed of Juncus acutus for ruminant nutrition. The samples of Juncus acutus stem and seed were randomly collected from Kizilirmak Delta, Samsun, Turkey. Micro and macro mineral concentrations of samples were analyzed by using an inductively coupled plasma mass spectrophotometer (ICP-MS) and ion chromatography (IC) methods, respectively. Differences between mean concentrations of B, Al, Cr, Mn, Fe, Co, Ni, Cu, Zn and Se in stem and seed of Juncus acutus samples were significant (P<0.05). The mean values of Al, Cr, Fe, Co, Ni and Se for stem of Juncus acutus were higher than values for seed of Juncus acutus but, the mean values of Mn, Cu and Zn for seed of Juncus acutus were higher than stem of Juncus acutus (P<0.05). The concentrations of Na, K and Ca in stem were higher than seed of Juncus acutus. On the other hand, the concentration of Mg for seed of Juncus acutus were higher than stem of Juncus acutus (P<0.05). In conclusion, the obtained results show that stem and seed of Juncus acutus may be a good source to meet the micro and macro mineral requirements of ruminant animals. Besides, the seeds of Juncus acutus may also provide micro and macro minerals to birds in wetlands.

References

  • 1. Almeida CMR, Mucha A, Vasonce Los MCSD (2004): Influence of the sea rush juncus maritimus on metal concentration and speciation in estuarine sediment colonized by the plant. Environ Sci Technol, 38, 3112-3118.
  • 2. Anike FN, Yusuf M, Isikhuemhen OS (2016): Co-Substrating of peanut shells with cornstalks enhances biodegradation by pleurotus ostreatus. J Bioremed Biodeg, 7, 327-334.
  • 3. Bonanno G (2011): Micro minerals accumulation and distribution in the organs of Phragmitesaustralis (common reed) and biomonitoring applications. Ecotoxicol Environ Saf, 74, 1057–1064.
  • 4. Bonanno G (2013): Comparative performance of micro minerals bioaccumulation and biomonitoringin the plant species Typha domingensis, Phragmites australis and Arundo donax. Ecotoxicol Environ Saf, 97, 124–130.
  • 5. Bonanno G, Vymazal J, Cirelli GR (2018): Translocation, accumulation and bioindication of trace elements in wetland plants. Sci of the Total Environ, 631–632, 252–261.
  • 6. Cacador I, Vale C, Catarino F (2000): Seasonal variation of Zn, Pb, Cu and Cd concentrations in the root sediment system of Spartina maritime and Halimione portulacoides from Tagus estuary salt marshes. Mar Environ Res, 49, 279-290.
  • 7. Cetinkaya N, Erdem F (2015): Effects of different Juncus acutus: maise silage ratios on digestibility and rumen cellulolytic bacteria. Kafkas Univ Vet Fak Derg, 21, 499-505.
  • 8. Ceylan S, Yoldas F, Elmacı O, et al (2016): Effect of green manure on yield and mineral nutrient content of pumpkin grown in sandy loam soil. Ege Üniv Ziraat Fak Derg, 53, 75-381.
  • 9. Engin MS, Uyanık A, Cay S (2017): Investigation of micro metals distribution in water, sediments and wetland plants of Kızılırmak Delta, Turkey. Int J Sed Res, 32, 90–97.
  • 10. Erdem F (2014): Determination the digestibility of Juncus acutusby in-vıtro gas production and its effect on ruminal cellulolytic bacteria by real-time PCR methods. PhD Thesis, Ondokuz Mayıs University, Graduate School of Health Sciences, Samsun.
  • 11. Erdem F, Cetinkaya N (2016): Digestibility of Juncus acutus and its effects on ruminal cellulolytic bacteria. Italian J Agric Sci, 15, 69-75.
  • 12. Erdem F, Cetinkaya N, Nisbet C, et al (2015): Estimation organic matter digestibility, metabolisable energy, phenolic compounds and antioxidant activity of stem and seed of Juncus acutus plant for ruminants. South African J Anim Sci, 45, 502-509.
  • 13. Feedipedia (2017) Animal Feed Resources Information System INRA CIRAD AFZ and FAO. Available at http://www.feedipedia.org/node/12167. (Accessed February 12, 2019).
  • 14. Gursoy E, Muhlis M (2017): Determination of mineral contents of some legume and cereal forages grown as naturally in pastures of Erzurum province. Alinteri J Agric Sci, 32 (1), 1-9.
  • 15. Hosseini Alhashemi AS, Karbassi AR, Hassanzadeh Kiabi B, et al (2011): Bioaccumulation of micro minerals in trophic levels of wetland plants and waterfowl birds. Biol Micro Elem Res, 142, 500-516.
  • 16. Jamnıcká G, Hrivnák R, Oťaheľová H, et al (2006): Heavy metals content in aquatic plant species from some aquatic biotopes in Slovakia. 336-370. In: Proocedings of 36th Internat Conf of IAD. Austrian Committee Danube Research/IAD.
  • 17. Judson GJ, Mcfarlane JD (1998): Mineral disorders in grazing livestock and the usefulness of soil and plant analysis in the assessment of these disorders. Aust J Experi Agric, 38, 707-723.
  • 18. Kuniyal JC, Sharma M, Chand K, et al (2015): Water soluble ionic components in particulate matter (PM10) during high pollution episode days at Mohal and Kothi in the North-Western Himalaya, India. Aerosol Aır Qual Res, 15, 529–543.
  • 19. Mcdowell LR, Conrad JH, Ellis GL, et al (1983): Minerals for grazing ruminants in tropical regions. Extension bulletin 1149, Animal Science Department, University of Florida, Gainesville.
  • 20. Medas D, De Giudici G, Pusceddu C, et al (2019): Impact of Zn excess on biomineralization processes in Juncus acutus grown in mine polluted sites. J Hazard Mater, 370, 98-107.
  • 21. Milic D, Lukovic J, Ninkov J, et al (2012): Heavy metal content in halophytic plants from inland and maritime saline areas. Cent Eur J Biol, 7, 307-317.
  • 22. Miller RO (1998): Microwave digestion of plant tissue in a closed vessel. 69-73. In, Kalra YP(Ed): Handbook of reference methods for plant analysis. CRC Press, New York.
  • 23. Minson DJ (1990): Forage in ruminants. Academic Press Inc. San Diego, California, USA.
  • 24. SAS (2007): SAS Statistic Software, SAS Campus Drive. Cary NC, USA.
  • 25. Singh N, Kaur M, Kaur Katnoria J (2017): Analaysis on biaccumulaton of metals in aquatic environment od Beas River Basin: Acase study from Kanjli wetland. Geo Health, 1, 93-105.
  • 26. Sousa AI, Cacador I, Lillebø AI, et al (2008): Heavy metal accumulation in Halimione portulacoides: Intra- and extra-cellular metal binding sites. Chemosphere, 70, 850-857.
  • 27. Sundby B, Vale C, Caçador I, et al (1998): Metal-rich concretions on the roots of salt marsh plants: Mechanism and rate of formation. Limnol Oceanogr, 43, 245-252.
  • 28. Teuchies J, Jacobs S, Oosterlee L, et al (2013): Role of plants in metal cycling in a tidal wetland: Implications for phytoremidiation. Sci Total Environ, 445–446, 146–154.
  • 29. Vodyanitskii YN, Shoba SA (2015): Biogeochemistry of carbon, iron, and heavy metals in wetlands (analytical review). Moscow Univ Soil Sci Bull, 70, 89–97.
  • 30. Windham L, Weis JS, Weise P (2003): Uptake and distribution of metals in two dominant salt marsh macrophytes, Spartina alternifolia (cordgrass) and Phragmites australis (common reed). Mar Environ Res, 56, 63-72.
  • 31. Yabanlı M, Yozukmaz A, Sel F (2014): Heavy Metal accumulation in the leaves, stem and root of the invasive submerged macrophyte Myriophyllum spicatum L. (Haloragaceae): An Example of Kadın Creek (Mugla, Turkey). Braz Arch Biol Technol, 57, 434-440.
There are 31 citations in total.

Details

Primary Language English
Subjects Veterinary Surgery
Journal Section Research Article
Authors

Funda Erdem 0000-0002-6006-7405

Nurcan Çetinkaya 0000-0002-9977-2937

Publication Date June 3, 2020
Published in Issue Year 2020Volume: 67 Issue: 3

Cite

APA Erdem, F., & Çetinkaya, N. (2020). Determination of mineral concentrations in stem and seed of Juncus acutus. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 67(3), 221-225. https://doi.org/10.33988/auvfd.570933
AMA Erdem F, Çetinkaya N. Determination of mineral concentrations in stem and seed of Juncus acutus. Ankara Univ Vet Fak Derg. June 2020;67(3):221-225. doi:10.33988/auvfd.570933
Chicago Erdem, Funda, and Nurcan Çetinkaya. “Determination of Mineral Concentrations in Stem and Seed of Juncus Acutus”. Ankara Üniversitesi Veteriner Fakültesi Dergisi 67, no. 3 (June 2020): 221-25. https://doi.org/10.33988/auvfd.570933.
EndNote Erdem F, Çetinkaya N (June 1, 2020) Determination of mineral concentrations in stem and seed of Juncus acutus. Ankara Üniversitesi Veteriner Fakültesi Dergisi 67 3 221–225.
IEEE F. Erdem and N. Çetinkaya, “Determination of mineral concentrations in stem and seed of Juncus acutus”, Ankara Univ Vet Fak Derg, vol. 67, no. 3, pp. 221–225, 2020, doi: 10.33988/auvfd.570933.
ISNAD Erdem, Funda - Çetinkaya, Nurcan. “Determination of Mineral Concentrations in Stem and Seed of Juncus Acutus”. Ankara Üniversitesi Veteriner Fakültesi Dergisi 67/3 (June 2020), 221-225. https://doi.org/10.33988/auvfd.570933.
JAMA Erdem F, Çetinkaya N. Determination of mineral concentrations in stem and seed of Juncus acutus. Ankara Univ Vet Fak Derg. 2020;67:221–225.
MLA Erdem, Funda and Nurcan Çetinkaya. “Determination of Mineral Concentrations in Stem and Seed of Juncus Acutus”. Ankara Üniversitesi Veteriner Fakültesi Dergisi, vol. 67, no. 3, 2020, pp. 221-5, doi:10.33988/auvfd.570933.
Vancouver Erdem F, Çetinkaya N. Determination of mineral concentrations in stem and seed of Juncus acutus. Ankara Univ Vet Fak Derg. 2020;67(3):221-5.