Review
BibTex RIS Cite
Year 2021, Volume: 68 Issue: 2, 185 - 192, 31.03.2021
https://doi.org/10.33988/auvfd.834133

Abstract

References

  • Abd El Qader A, Lieberman D, Shemer AY, et al (2015): Volatile organic compounds generated by cultures of bacteria and viruses associated with respiratory infections. Biomed Chromatography, 29, 1783–1790.
  • Aksenov AA, Gojova A, Zhao W, et al (2012): Characterization of Volatile Organic Compounds in Human Leukocyte Antigen Heterologous Expression Systems: A Cell’s “Chemical Odor Fingerprint. Chem Bio Chem, 13, 1053-1059.
  • Angle C, Waggoner LP, Ferrando A, et al (2016): Canine detection of the volatilome: a review of implications for pathogen and disease detection. Front Vet Sci, 3, 47.
  • Barrios AW, Núñez G, Quinteiro SP, et al (2014): Anatomy, histochemistry, and immunohistochemistry of the olfactory subsystems in mice. Front Neuroanat, 8, 63.
  • Bergmann A, Trefz P, Fischer S, et al (2015): In Vivo Volatile Organic Compound Signatures of Mycobacterium avium subsp. paratuberculosis. PLoS ONE, 10, e0123980.
  • Bomers MK, van Agtmael MA, Luik H, et al (2012): Using a dog’s superior olfactory sensitivity to identify Clostridium difficile in stools and patients: proof of principle study. BMJ, 345, e7396.
  • Bomers MK, van Agtmael MA, Luik H, et al (2014): A detection dog to identify patients with Clostridium difficile infection during a hospital outbreak. J Infect, 69, 456-461.
  • Bos LDJ, Sterk PJ, Schultz MJ (2013): Volatile metabolites of pathogens: a systematic review. PLoS Pathog, 9, e1003311.
  • Brooks SW, Moore DR, Marzouk EB, et al (2015): Canine Olfaction and Electronic Nose Detection of Volatile Organic Compounds in the Detection of Cancer: A Review. Cancer Investigation, 33, 411-419.
  • Bryce E, Zurberg T, Zurberg M, et al (2017): Identifying environmental reservoirs of Clostridium difficile with a scent detection dog: preliminary evaluation. J Hosp Infect, 97, 140-145.
  • Buszewski B, Kesy M, Ligor T, et al (2007): Human exhaled air analytics: Biomarkers of diseases. Biomed Chromatogr, 21, 553–566.
  • Callaway E (2020): Time to use the p-word? Coronavirus enter dangerous new phase. Nature, 579, 12.
  • Cascella M, Rajnik M, Cuomo A, et al (2020): Features, evaluation and treatment coronavirus. (COVID-19), StatPearls.
  • Cornu JN, Cancel-Tassin G, Ondet V, et al (2011): Olfactory detection of prostate cancer by dogs sniffing urine: A step forward in early diagnosis. Eur Urol, 59, 197–201.
  • Craven BA, Neuberger T, Paterson EG, et al (2007): Reconstruction and morphometric analysis of the nasal airway of the dog (Canis familiaris) and implications regarding olfactory airflow. Anat Rec, 290, 1325–1340.
  • Dummer J, Storer Swanney M, McEwan M, et al (2011): Analysis of biogenic volatile organic compounds in health and disease. Trends Anal Chem, 30, 960-967.
  • Ehmann R, Boedeker E, Friedrich U, et al (2012): Canine scent detection in the diagnosis of lung cancer: Revisiting a puzzling phenomenon. Eur Respir J, 39, 669–676.
  • Fischer-Tenhagen C, Theby V, Kromker V, et al (2018): Detecting Staphylococcus aureus in milk from dairy cows using sniffer dogs. J Dairy Sci, 101, 4317-4324.
  • Friedrich RW, Laurent G (2001). Dynamic optimization of odor representations by slow temporal patterning of mitral cell activity. Science, 291, 889–894.
  • Grady SL, Purdy JG, Rabinowitz JD, et al (2013): Argininosuccinate synthetase 1 depletion produces a metabolic state conducive to herpes simplex virus 1 infection. Proc Natl Acad Sci US, 110, E5006–15.
  • Gisbert JP, Pajares JM (2004): 13C-urea breath test in the diagnosis of Helicobacter pylori infection-A critical. Aliment Pharm, 20, 1001–1017.
  • Grandjean D, Sarkis R, Tourtier JP, et al (2020): Detection dogs as a help in the detection of COVID-19 Can the dog alert on COVID-19 positive persons by sniffing axillary sweat samples ? Proof-of-concept study. BioRxiv, 2020.06.03.132134.
  • Guest C, Pinder M, Doggett M, et al (2019): Trained dogs identify people with malaria parasites by their odour. Lancet Infect Dis, 19, 578-580.
  • Halpern M, Martinez, Marcos A (2003): Structure and function of the vomeronasal system: an update. Prog Neurobiol, 70, 245–318.
  • Horvath G, Järverud GAK, Järverud S, et al (2008): Human ovarian carcinomas detected by specific odor, Integr Cancer Ther, 7, 76–80.
  • Horvath G, Andersson H, Paulsson G (2010): Characteristic odour in the blood reveals ovarian carcinoma, BMC Cancer, 10, 643
  • Janik E, Ceremuga M, Niemcewicz M, et al (2020): Dangerous Pathogens as a Potential Problem for Public Health. Medicina, 56, 591.
  • Jendrny P, Schulz C, Twele F, et al (2020): Scent dog identification of samples from COVID-19 patients – a pilot study. BMC Infect Dis, 20, 536.
  • Jones RT, Guest C, Lindsay SW, et al (2020): Could bio-detection dogs be used to limit the spread of COVID-19 by travellers? J Travel Med, 27, taaa131.
  • Koivusalo M, Vermeiren C, Yuen J, et al (2017): Canine scent detection as a tool to distinguish meticillin-resistant Staphylococcus aureus. J Hosp Infect, 96, 93-96.
  • Kolk A, Hoelscher M, Maboko L, et al (2010): Electronic-nose technology using sputum samples in diagnosis of patients with tuberculosis. Clin Microbiol, 48, 4235-8.
  • Leighton EA, Hare E, Thomas S, et al (2018): A solution for the shortage of detection dogs: a detection dog center of excellence and a cooperative breeding program. Front Vet Sci, 5, 284.
  • Lippi G, Heaney LM (2020): The “olfactory fingerprint”: can diagnostics be improved by combining canine and digital noses? Clin Chem Lab Med, 58, 958-967.
  • Mashir A, Paschke KM, Van Duin D, et al (2011): Effect of the influenza A (H1N1) live attenuated intranasal vaccine on nitric oxide (FENO) and other volatiles in exhaled breath. J Breath Res, 5, 037107.
  • Maurer M, McCulloch M, Willey AM, et al (2016): Detection of bacteriuria by canine olfaction. Open Forum Infect Dis, 3, ofw051.
  • McCulloch M, Jezierski T, Broffman M, et al (2006): Diagnostic accuracy of canine scent detection in early- and late-stage lung and breast cancers. Integr Cancer Ther, 5, 30-39.
  • McGann JP (2017): Poor human olfaction is a 19th-century myth. Science, 356, pii: eaam7263.
  • Meredith M (1998): Vomeronasal, olfactory, hormonal convergence in the brain. Cooperation or coincidence? Ann N Y Acad Sci, 30, 349-361.
  • Miekisch W, Schubert JK, Noeldge-Schomburg GFE (2004): Diagnostic potential of breath analysis—Focus on volatile organic compounds. Clin Chim Acta, 347, 25–39.
  • Pavlou AK, Magan N, Jones JM, et al (2004): Biosens Bioelectron. Detection of Mycobacterium tuberculosis (TB) in vitro and in situ using an electronic nose in combination with a neural network system. Biosens Bioelectron, 20, 538-544.
  • Pavlova NN, Thompson CB (2016): The emerging hallmarks of cancer metabolism. Cell Metab, 23, 27–47.
  • Phillips M, Altorki N, Austin JHM, et al (2008): Detection of lung cancer using weighted digital analysis of breath biomarkers. Clin Chim Acta, 393, 76–84.
  • Pickel D, Manucy GP, Walker DB, et al (2004): Evidence for canine olfactory detection of melanoma. Appl Anim Behav Sci, 89, 107–116.
  • Quignon P, Kirkness E, Cadieu E, et al (2003): Comparison of the canine and human olfactory receptor gene repertoires, Genome Biology, 4, R80.
  • Remuzzi G (2020): COVID-19 and Italy: what next? Lancet, 395, 1225-1228.
  • Ritter JB, Wahl AS, Freund S, et al (2010): Metabolic effects of influenza virus infection in cultured animal cells: intra- and extracellular metabolite profiling. BMC Syst Biol, 4, 61.
  • Rosias PR, Dompeling E, Dentener MA, et al (2004): Childhood asthma: Exhaled markers of airway inflammation, asthma control score, and lung function tests. Pediatr Pulmonol, 38, 107–114.
  • Rothe C, Schunk M, Sothmann P, et al. (2020): Transmission of 2019- nCoV infection from an asymptomatic contact in Germany. N Engl J Med, 382, 970-971.
  • Rouquier S, Giorgi D (2007): Olfactory receptor gene repertoires in mammals. Mutat Res-Fund Mol M, 616, 95-102.
  • Schivo M, Aksenov AA, Linderholm AL, et al (2014): Volatile emanations from in vitro airway cells infected with human rhinovirus. J Breath Res, 8, 037110.
  • Schmidt K, Podmore IJ (2015): Current Challenges in Volatile Organic Compounds Analysis as Potential Biomarkers of Cancer. Biomark, 981458.
  • Shirasu M, Touhara K (2011): The scent of disease: Volatile organic compounds of the human body related to disease and disorder. JBC, 150, 257-266.
  • Singhal TA (2020): Review of Coronavirus Disease-2019 (COVID-19). Indian J Pediatr, 87, 281–286.
  • Solga SF, Risby T (2010): What is Normal Breath? Challenge and Opportunity. IEEE Sens J, 10, 7–9.
  • Sonoda H, Kohnoe S, Yamazato T, et al (2011): Colorectal cancer screening with odour material by canine scent detection. Gut, 60, 814–819.
  • Španˇel P, Smith D (2011): Progress in SIFT-MS: Breath analysis and other applications. Mass Spec Rev, 30, 236–267.
  • Taylor MT, McCready J, Broukhanski G, et al (2018): Using dog scent detection as a point-of-care tool to identify toxigenic Clostridium difficile in stool. Open Forum Infect Dis, 5, ofy179.
  • Teodoro-Morrison T, Diamandis EP, Rifai N, et al (2014): Animal olfactory detection of disease: promises and pitfalls. Clin Chem, 60, 1473-1479.
  • Thai M, Thaker SK, Feng J, et al (2015): MYC-induced reprogramming of glutamine catabolism supports optimal virus replication. Nat Commun, 6, 8873.
  • Thaker SK, Chapa T, Garcia G Jr, et al (2019): Differential Metabolic Reprogramming by Zika Virus Promotes Cell Death in Human versus Mosquito Cells. Cell Metab, 29, 1206-1216.e4.
  • Van den Velde S, Nevens F, Van Hee P, et al (2008): GC-MS analysis of breath odor compounds in liver patients. Chromatogr B Analyt Technol Biomed Life Sci, 875, 344-8.
  • Walker DB, Walker JC, Cavnar PJ, et al (2006): Naturalistic quantification of canine olfactory sensitivity. Appl Anim Behav Sci, 97, 241–254.
  • World Health Organization (1997): The World Health Report: Conquering suffering, enriching humanity. WHO Library Cataloguing-in-Publication Data. ISSN: 1020-3311.
  • World Health Organization (2007): The World Health Report: A safer future. Global public health security in the 21st century. WHO Library Cataloguing-in-Publication Data. ISSN: 1020-3311.
  • Williams H, Pembroke A (1989): Sniffer dogs in the melanoma clinic? Lancet, 333, 734.
  • Willis CM, Church SM, Guest CM, et al (2004): Olfactory detection of human bladder cancer by dogs: Proof of principle study, Br Med J, 329, 712–714.
  • Xu F, Schaefer M, Kida I, et al (2005): Simultaneous activation of mouse main and accessory olfactory bulbs by odors or pheromones. J Comp Neurol, 489, 491–500.
  • Yu Y, Maguire TG, Alwine JC (2011): Human cytomegalovirus activates glucose transporter 4 expression to increase glucose uptake during infection. J Virol, 85, 1573–80.

The role of bio-detection dogs in the prevention and diagnosis of infectious diseases: A systematic review

Year 2021, Volume: 68 Issue: 2, 185 - 192, 31.03.2021
https://doi.org/10.33988/auvfd.834133

Abstract

Infectious diseases have been lately considered as one of the most important global risks, which negatively impact not only the health but also the socioeconomic conditions of countries. Globalization influences the spread of infectious diseases as a result of increased travelling and interaction in humans. Thus, it is highly important to prevent and diagnose new infectious diseases by using accurate and quick diagnostic methods.
Bio-detection dogs have a great potential to accurately diagnose infectious disease as they have a great ability to sense disease-specific volatile organic compounds (VOCs) originate from infectious agents and/or pathophysiological processes in the human body. The use of these dogs to detect infectious diseases has come to focus in particular after the recent global health crisis due to the SARS-CoV-2 infection.
This review discusses the potential use of bio-detection dogs in the prevention and diagnosing of infectious diseases. Moreover, factors affecting the scent of the disease, e.g. VOCs, are tried to be highlighted.

References

  • Abd El Qader A, Lieberman D, Shemer AY, et al (2015): Volatile organic compounds generated by cultures of bacteria and viruses associated with respiratory infections. Biomed Chromatography, 29, 1783–1790.
  • Aksenov AA, Gojova A, Zhao W, et al (2012): Characterization of Volatile Organic Compounds in Human Leukocyte Antigen Heterologous Expression Systems: A Cell’s “Chemical Odor Fingerprint. Chem Bio Chem, 13, 1053-1059.
  • Angle C, Waggoner LP, Ferrando A, et al (2016): Canine detection of the volatilome: a review of implications for pathogen and disease detection. Front Vet Sci, 3, 47.
  • Barrios AW, Núñez G, Quinteiro SP, et al (2014): Anatomy, histochemistry, and immunohistochemistry of the olfactory subsystems in mice. Front Neuroanat, 8, 63.
  • Bergmann A, Trefz P, Fischer S, et al (2015): In Vivo Volatile Organic Compound Signatures of Mycobacterium avium subsp. paratuberculosis. PLoS ONE, 10, e0123980.
  • Bomers MK, van Agtmael MA, Luik H, et al (2012): Using a dog’s superior olfactory sensitivity to identify Clostridium difficile in stools and patients: proof of principle study. BMJ, 345, e7396.
  • Bomers MK, van Agtmael MA, Luik H, et al (2014): A detection dog to identify patients with Clostridium difficile infection during a hospital outbreak. J Infect, 69, 456-461.
  • Bos LDJ, Sterk PJ, Schultz MJ (2013): Volatile metabolites of pathogens: a systematic review. PLoS Pathog, 9, e1003311.
  • Brooks SW, Moore DR, Marzouk EB, et al (2015): Canine Olfaction and Electronic Nose Detection of Volatile Organic Compounds in the Detection of Cancer: A Review. Cancer Investigation, 33, 411-419.
  • Bryce E, Zurberg T, Zurberg M, et al (2017): Identifying environmental reservoirs of Clostridium difficile with a scent detection dog: preliminary evaluation. J Hosp Infect, 97, 140-145.
  • Buszewski B, Kesy M, Ligor T, et al (2007): Human exhaled air analytics: Biomarkers of diseases. Biomed Chromatogr, 21, 553–566.
  • Callaway E (2020): Time to use the p-word? Coronavirus enter dangerous new phase. Nature, 579, 12.
  • Cascella M, Rajnik M, Cuomo A, et al (2020): Features, evaluation and treatment coronavirus. (COVID-19), StatPearls.
  • Cornu JN, Cancel-Tassin G, Ondet V, et al (2011): Olfactory detection of prostate cancer by dogs sniffing urine: A step forward in early diagnosis. Eur Urol, 59, 197–201.
  • Craven BA, Neuberger T, Paterson EG, et al (2007): Reconstruction and morphometric analysis of the nasal airway of the dog (Canis familiaris) and implications regarding olfactory airflow. Anat Rec, 290, 1325–1340.
  • Dummer J, Storer Swanney M, McEwan M, et al (2011): Analysis of biogenic volatile organic compounds in health and disease. Trends Anal Chem, 30, 960-967.
  • Ehmann R, Boedeker E, Friedrich U, et al (2012): Canine scent detection in the diagnosis of lung cancer: Revisiting a puzzling phenomenon. Eur Respir J, 39, 669–676.
  • Fischer-Tenhagen C, Theby V, Kromker V, et al (2018): Detecting Staphylococcus aureus in milk from dairy cows using sniffer dogs. J Dairy Sci, 101, 4317-4324.
  • Friedrich RW, Laurent G (2001). Dynamic optimization of odor representations by slow temporal patterning of mitral cell activity. Science, 291, 889–894.
  • Grady SL, Purdy JG, Rabinowitz JD, et al (2013): Argininosuccinate synthetase 1 depletion produces a metabolic state conducive to herpes simplex virus 1 infection. Proc Natl Acad Sci US, 110, E5006–15.
  • Gisbert JP, Pajares JM (2004): 13C-urea breath test in the diagnosis of Helicobacter pylori infection-A critical. Aliment Pharm, 20, 1001–1017.
  • Grandjean D, Sarkis R, Tourtier JP, et al (2020): Detection dogs as a help in the detection of COVID-19 Can the dog alert on COVID-19 positive persons by sniffing axillary sweat samples ? Proof-of-concept study. BioRxiv, 2020.06.03.132134.
  • Guest C, Pinder M, Doggett M, et al (2019): Trained dogs identify people with malaria parasites by their odour. Lancet Infect Dis, 19, 578-580.
  • Halpern M, Martinez, Marcos A (2003): Structure and function of the vomeronasal system: an update. Prog Neurobiol, 70, 245–318.
  • Horvath G, Järverud GAK, Järverud S, et al (2008): Human ovarian carcinomas detected by specific odor, Integr Cancer Ther, 7, 76–80.
  • Horvath G, Andersson H, Paulsson G (2010): Characteristic odour in the blood reveals ovarian carcinoma, BMC Cancer, 10, 643
  • Janik E, Ceremuga M, Niemcewicz M, et al (2020): Dangerous Pathogens as a Potential Problem for Public Health. Medicina, 56, 591.
  • Jendrny P, Schulz C, Twele F, et al (2020): Scent dog identification of samples from COVID-19 patients – a pilot study. BMC Infect Dis, 20, 536.
  • Jones RT, Guest C, Lindsay SW, et al (2020): Could bio-detection dogs be used to limit the spread of COVID-19 by travellers? J Travel Med, 27, taaa131.
  • Koivusalo M, Vermeiren C, Yuen J, et al (2017): Canine scent detection as a tool to distinguish meticillin-resistant Staphylococcus aureus. J Hosp Infect, 96, 93-96.
  • Kolk A, Hoelscher M, Maboko L, et al (2010): Electronic-nose technology using sputum samples in diagnosis of patients with tuberculosis. Clin Microbiol, 48, 4235-8.
  • Leighton EA, Hare E, Thomas S, et al (2018): A solution for the shortage of detection dogs: a detection dog center of excellence and a cooperative breeding program. Front Vet Sci, 5, 284.
  • Lippi G, Heaney LM (2020): The “olfactory fingerprint”: can diagnostics be improved by combining canine and digital noses? Clin Chem Lab Med, 58, 958-967.
  • Mashir A, Paschke KM, Van Duin D, et al (2011): Effect of the influenza A (H1N1) live attenuated intranasal vaccine on nitric oxide (FENO) and other volatiles in exhaled breath. J Breath Res, 5, 037107.
  • Maurer M, McCulloch M, Willey AM, et al (2016): Detection of bacteriuria by canine olfaction. Open Forum Infect Dis, 3, ofw051.
  • McCulloch M, Jezierski T, Broffman M, et al (2006): Diagnostic accuracy of canine scent detection in early- and late-stage lung and breast cancers. Integr Cancer Ther, 5, 30-39.
  • McGann JP (2017): Poor human olfaction is a 19th-century myth. Science, 356, pii: eaam7263.
  • Meredith M (1998): Vomeronasal, olfactory, hormonal convergence in the brain. Cooperation or coincidence? Ann N Y Acad Sci, 30, 349-361.
  • Miekisch W, Schubert JK, Noeldge-Schomburg GFE (2004): Diagnostic potential of breath analysis—Focus on volatile organic compounds. Clin Chim Acta, 347, 25–39.
  • Pavlou AK, Magan N, Jones JM, et al (2004): Biosens Bioelectron. Detection of Mycobacterium tuberculosis (TB) in vitro and in situ using an electronic nose in combination with a neural network system. Biosens Bioelectron, 20, 538-544.
  • Pavlova NN, Thompson CB (2016): The emerging hallmarks of cancer metabolism. Cell Metab, 23, 27–47.
  • Phillips M, Altorki N, Austin JHM, et al (2008): Detection of lung cancer using weighted digital analysis of breath biomarkers. Clin Chim Acta, 393, 76–84.
  • Pickel D, Manucy GP, Walker DB, et al (2004): Evidence for canine olfactory detection of melanoma. Appl Anim Behav Sci, 89, 107–116.
  • Quignon P, Kirkness E, Cadieu E, et al (2003): Comparison of the canine and human olfactory receptor gene repertoires, Genome Biology, 4, R80.
  • Remuzzi G (2020): COVID-19 and Italy: what next? Lancet, 395, 1225-1228.
  • Ritter JB, Wahl AS, Freund S, et al (2010): Metabolic effects of influenza virus infection in cultured animal cells: intra- and extracellular metabolite profiling. BMC Syst Biol, 4, 61.
  • Rosias PR, Dompeling E, Dentener MA, et al (2004): Childhood asthma: Exhaled markers of airway inflammation, asthma control score, and lung function tests. Pediatr Pulmonol, 38, 107–114.
  • Rothe C, Schunk M, Sothmann P, et al. (2020): Transmission of 2019- nCoV infection from an asymptomatic contact in Germany. N Engl J Med, 382, 970-971.
  • Rouquier S, Giorgi D (2007): Olfactory receptor gene repertoires in mammals. Mutat Res-Fund Mol M, 616, 95-102.
  • Schivo M, Aksenov AA, Linderholm AL, et al (2014): Volatile emanations from in vitro airway cells infected with human rhinovirus. J Breath Res, 8, 037110.
  • Schmidt K, Podmore IJ (2015): Current Challenges in Volatile Organic Compounds Analysis as Potential Biomarkers of Cancer. Biomark, 981458.
  • Shirasu M, Touhara K (2011): The scent of disease: Volatile organic compounds of the human body related to disease and disorder. JBC, 150, 257-266.
  • Singhal TA (2020): Review of Coronavirus Disease-2019 (COVID-19). Indian J Pediatr, 87, 281–286.
  • Solga SF, Risby T (2010): What is Normal Breath? Challenge and Opportunity. IEEE Sens J, 10, 7–9.
  • Sonoda H, Kohnoe S, Yamazato T, et al (2011): Colorectal cancer screening with odour material by canine scent detection. Gut, 60, 814–819.
  • Španˇel P, Smith D (2011): Progress in SIFT-MS: Breath analysis and other applications. Mass Spec Rev, 30, 236–267.
  • Taylor MT, McCready J, Broukhanski G, et al (2018): Using dog scent detection as a point-of-care tool to identify toxigenic Clostridium difficile in stool. Open Forum Infect Dis, 5, ofy179.
  • Teodoro-Morrison T, Diamandis EP, Rifai N, et al (2014): Animal olfactory detection of disease: promises and pitfalls. Clin Chem, 60, 1473-1479.
  • Thai M, Thaker SK, Feng J, et al (2015): MYC-induced reprogramming of glutamine catabolism supports optimal virus replication. Nat Commun, 6, 8873.
  • Thaker SK, Chapa T, Garcia G Jr, et al (2019): Differential Metabolic Reprogramming by Zika Virus Promotes Cell Death in Human versus Mosquito Cells. Cell Metab, 29, 1206-1216.e4.
  • Van den Velde S, Nevens F, Van Hee P, et al (2008): GC-MS analysis of breath odor compounds in liver patients. Chromatogr B Analyt Technol Biomed Life Sci, 875, 344-8.
  • Walker DB, Walker JC, Cavnar PJ, et al (2006): Naturalistic quantification of canine olfactory sensitivity. Appl Anim Behav Sci, 97, 241–254.
  • World Health Organization (1997): The World Health Report: Conquering suffering, enriching humanity. WHO Library Cataloguing-in-Publication Data. ISSN: 1020-3311.
  • World Health Organization (2007): The World Health Report: A safer future. Global public health security in the 21st century. WHO Library Cataloguing-in-Publication Data. ISSN: 1020-3311.
  • Williams H, Pembroke A (1989): Sniffer dogs in the melanoma clinic? Lancet, 333, 734.
  • Willis CM, Church SM, Guest CM, et al (2004): Olfactory detection of human bladder cancer by dogs: Proof of principle study, Br Med J, 329, 712–714.
  • Xu F, Schaefer M, Kida I, et al (2005): Simultaneous activation of mouse main and accessory olfactory bulbs by odors or pheromones. J Comp Neurol, 489, 491–500.
  • Yu Y, Maguire TG, Alwine JC (2011): Human cytomegalovirus activates glucose transporter 4 expression to increase glucose uptake during infection. J Virol, 85, 1573–80.
There are 68 citations in total.

Details

Primary Language English
Subjects Veterinary Surgery
Journal Section Review
Authors

Yasemin Salgırlı Demirbaş 0000-0003-3869-3749

Bülent Baş 0000-0001-9992-8738

Hakan Öztürk 0000-0003-2913-2069

Gorkem Kismali 0000-0003-3414-4697

Merve Alpay 0000-0002-8782-9561

Hale Seçilmiş Canbay 0000-0002-3783-8064

Fatih Emen 0000-0002-4974-2940

Barış Sareyyüpoğlu 0000-0002-2212-2610

Aykut Özkul 0000-0001-5008-9443

Publication Date March 31, 2021
Published in Issue Year 2021Volume: 68 Issue: 2

Cite

APA Salgırlı Demirbaş, Y., Baş, B., Öztürk, H., Kismali, G., et al. (2021). The role of bio-detection dogs in the prevention and diagnosis of infectious diseases: A systematic review. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 68(2), 185-192. https://doi.org/10.33988/auvfd.834133
AMA Salgırlı Demirbaş Y, Baş B, Öztürk H, Kismali G, Alpay M, Seçilmiş Canbay H, Emen F, Sareyyüpoğlu B, Özkul A. The role of bio-detection dogs in the prevention and diagnosis of infectious diseases: A systematic review. Ankara Univ Vet Fak Derg. March 2021;68(2):185-192. doi:10.33988/auvfd.834133
Chicago Salgırlı Demirbaş, Yasemin, Bülent Baş, Hakan Öztürk, Gorkem Kismali, Merve Alpay, Hale Seçilmiş Canbay, Fatih Emen, Barış Sareyyüpoğlu, and Aykut Özkul. “The Role of Bio-Detection Dogs in the Prevention and Diagnosis of Infectious Diseases: A Systematic Review”. Ankara Üniversitesi Veteriner Fakültesi Dergisi 68, no. 2 (March 2021): 185-92. https://doi.org/10.33988/auvfd.834133.
EndNote Salgırlı Demirbaş Y, Baş B, Öztürk H, Kismali G, Alpay M, Seçilmiş Canbay H, Emen F, Sareyyüpoğlu B, Özkul A (March 1, 2021) The role of bio-detection dogs in the prevention and diagnosis of infectious diseases: A systematic review. Ankara Üniversitesi Veteriner Fakültesi Dergisi 68 2 185–192.
IEEE Y. Salgırlı Demirbaş, B. Baş, H. Öztürk, G. Kismali, M. Alpay, H. Seçilmiş Canbay, F. Emen, B. Sareyyüpoğlu, and A. Özkul, “The role of bio-detection dogs in the prevention and diagnosis of infectious diseases: A systematic review”, Ankara Univ Vet Fak Derg, vol. 68, no. 2, pp. 185–192, 2021, doi: 10.33988/auvfd.834133.
ISNAD Salgırlı Demirbaş, Yasemin et al. “The Role of Bio-Detection Dogs in the Prevention and Diagnosis of Infectious Diseases: A Systematic Review”. Ankara Üniversitesi Veteriner Fakültesi Dergisi 68/2 (March 2021), 185-192. https://doi.org/10.33988/auvfd.834133.
JAMA Salgırlı Demirbaş Y, Baş B, Öztürk H, Kismali G, Alpay M, Seçilmiş Canbay H, Emen F, Sareyyüpoğlu B, Özkul A. The role of bio-detection dogs in the prevention and diagnosis of infectious diseases: A systematic review. Ankara Univ Vet Fak Derg. 2021;68:185–192.
MLA Salgırlı Demirbaş, Yasemin et al. “The Role of Bio-Detection Dogs in the Prevention and Diagnosis of Infectious Diseases: A Systematic Review”. Ankara Üniversitesi Veteriner Fakültesi Dergisi, vol. 68, no. 2, 2021, pp. 185-92, doi:10.33988/auvfd.834133.
Vancouver Salgırlı Demirbaş Y, Baş B, Öztürk H, Kismali G, Alpay M, Seçilmiş Canbay H, Emen F, Sareyyüpoğlu B, Özkul A. The role of bio-detection dogs in the prevention and diagnosis of infectious diseases: A systematic review. Ankara Univ Vet Fak Derg. 2021;68(2):185-92.