Research Article
BibTex RIS Cite

Decontamination of Salmonella Typhimurium with chitosan and lactic acid on broiler carcasses

Year 2021, Volume: 68 Issue: 4, 389 - 395, 27.09.2021
https://doi.org/10.33988/auvfd.801253

Abstract

Salmonella Typhimurium is frequently isolated from chicken meat. The main purpose of current study was to analyze the decontamination of S. Typhimurium by using different concentrations of chitosan, lactic acid and chitosan and lactic acid combination on broiler carcasses. S. Typhimurium was inoculated to broiler carcasses at 108 cfu/mL in eight different study groups. Then, contaminated carcasses were treated with 1%, 2% lactic acid and 0.1%, 0.05% chitosan for 5, 10, 15 min. Also, effects of the combination of chitosan and lactic acid (0.05% chitosan- 1% lactic acid, 0.01% chitosan- 1% lactic acid) were analyzed for 5, 10, 15 min. Carcasses samples treated with chitosan and lactic acid were analysed for survival of S. Typhimurium on the 0, 3 and 7 days of storage time. Lactic acid (1%, 2%), combination of chitosan and lactic acid (0.05% chitosan + 1% lactic acid and 0.01% chitosan and 1% lactic acid) were detected to have antimicrobial effect on S. Typhimurium inoculated into carcasses (P<0.05). There is no difference between the working groups in terms of implementation time (P>0.05). According to the study, it was found that the combination of lactic acid and chitosan is the most effective method against S. Typhimurium in poultry carcasses. As a result, it is thought that the decontaminant agents which preferred in the study can be used in various applications in the poultry industry.

Thanks

This study includes data of the first author’s Master thesis.

References

  • Agırdemır O, Yurdakul O, Keyvan E, et al (2020): Effects of various chemical decontaminants on Salmonella Typhimurium survival in chicken carcasses. Food Sci Technol (Campinas).
  • Allerberger F (2016): Poultry and human infections. Clin Microbiol Infect, 22, 101-102.
  • Anonymus (2014): Salmonella ve Belirlenmiş Diğer Gıda Kaynaklı Zoonotik Etkenlerin Kontrol Altına Alınması Hakkında Yönetmelik. Avalaible at: https://www.resmigaze-te.gov.tr/eskiler/2014/03/20140327. pdf. (Accessed Sept 24, 2020).
  • Antunes P, Mourão J, Campos J, et al (2016): Salmonellosis: the role of poultry meat. Clin Microbiol Infect, 22, 110-121.
  • Aranaz I, Acosta N, Civera C, et al (2018): Cosmetics and cosmeceutical applications of chitin, chitosan and their derivatives. Polymers, 10, 213.
  • Bhoir SA, Jhaveri M, Chawla SP (2019): Evaluation and predictive modeling of the effect of chitosan and gamma irradiation on quality of stored chilled chicken meat. J Food Process Eng, 42, e13254.
  • Bolder NM (1997): Decontamination of meat and poultry carcasses. Trends Food Sci Technol, 8, 221-227.
  • Cardinale E, Tall F, Cisse M, et al (2005): Risk factors associated with Salmonella enterica subsp. enterica contamination of chicken carcases in Senegal. Br Poult Sci, 46, 293-299.
  • Castañeda-Gulla K, Sattlegger E, Mutukumira AN (2020): Persistent contamination of Salmonella, Campylobacter, Escherichia coli, and Staphylococcus aureus at a broiler farm in New Zealand. Can J Microbiol, 66, 171-185.
  • Cavani C, Petracci M, Trocino A, et al (2009): Advances in research on poultry and rabbit meat quality. Ital J Anim Sci, 8, 741-750.
  • Chang SH, Chen CH, Tsai GJ (2020): Effects of chitosan on Clostridium perfringens and application in the preservation of pork sausage. Mar Drugs, 18, 70.
  • Cheung RCF, Ng TB, Wong JH, et al (2015): Chitosan: an update on potential biomedical and pharmaceutical applications. Mar Drugs, 13, 5156-5186.
  • De Smet S, Vossen E (2016): Meat: The balance between nutrition and health. A review. Meat Sci, 120, 145-156.
  • El-Khawas KM, Mashat BH, Attala OA, et al (2020): Control of Salmonella and Escherichia coli in chilled chicken fillets using chitosan and lactic acid. CYTA J Food, 18, 445-450.
  • European Food Safety Authority and European Centre for Disease Prevention and Control-EFSA/ECDC (2018): The European Union summary report on trends and sources of zoonoses, zoonotic agents and food‐borne outbreaks in 2017. EFSA Journal, 16, e05500.
  • Foley SL, Nayak R, Hanning IB (2011): Population dynamics of Salmonella enterica serotypes in commercial egg and poultry production. Appl Environ Microbiol, 77, 4273-4279.
  • Food and Agriculture Organization-FAO (2006): Databases: Food Balance Sheets. Avalaible at: http://faostat.fao.org. (Accessed Sept 24, 2020).
  • Food and Agriculture Organization-FAO (2016): Bacteriological Analytical Manual, Chapter 5 Salmonella. Avalaible at: http://www.fda.gov/Food/FoodScienceRese-arch/LaboratoryMethods/ucm070149.html. (Accessed Sept 24, 2020).
  • Firouzabadi A, Saadati D, Najimi M, et al (2020): Prevalence and related factors of Salmonella spp. and Salmonella Typhimurium contamination among broiler farms in Kerman province, Iran. Prev Vet Med, 175, 104838.
  • Goncuoglu M, Ormanci FSB, Uludag M, et al (2016): Prevalence and antibiotic resistance of Salmonella spp. and Salmonella Typhimurium in broiler carcasses wings and liver. J Food Saf, 36, 524-531.
  • Gücükoğlu A, Çadırcı Ö, Gülel GT (2020): Serotyping and antibiotic resistance profile of Listeria monocytogenes isolated from organic chicken meat. Kafkas Univ Vet Fak Derg, 26, 499-505.
  • Heredia N, García S (2018): Animals as sources of food-borne pathogens: A review. Anim Nutr, 4, 250-255.
  • Herikstad H, Motarjemi Y, Tauxe RV (2002): Salmonella surveillance: a global survey of public health serotyping. Epidemiol Infect, 129, 1-8.
  • Hinton MH, Corry JEL (1999): The decontamination of carcass meat. 285-296. In: R Richardson (Ed), Poultry Meat Science. Oxon, Cabi Publishing.
  • Hoelzer K, Switt AIM, Wiedmann M (2011): Animal contact as a source of human non-typhoidal salmonellosis. Vet Res, 42, 34.
  • Huang RL, Yin YL, Wu GY, et al (2005): Effect of dietary oligochitosan supplementation on ileal digestibility of nutrients and performance in broilers. Poult Sci, 84, 1383-1388.
  • Huang RL, Deng ZY, Yang C et al (2007): Dietary oligochitosan supplementation enhances immune status of broilers. J Sci Food Agric, 87, 153-159.
  • Hwang C, Beuchat LR (1995): Efficacy of selected chemicals for killing pathogenic and spoilage microorganisms on chicken skin. J Food Prot, 58, 19-23.
  • Kabanov VL, Novinyuk LV (2020): Chitosan application in food technology: A review of rescent advances. Food Systems, 3, 10-15.
  • Kong M, Chen XG, Xing K (2010): Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol, 144, 51-63.
  • Kuang X, Hao H, Dai M (2015): Serotypes and antimicrobial susceptibility of Salmonella spp. isolated from farm animals in China. Front Microbiol, 6, 1-11.
  • Lim YH, Hirose K, Izumiya H, et al (2003): Multiplex polymerase chain reaction assay for selective detection of Salmonella enterica serovar Typhimurium. Jpn J Infect Dis, 56, 151-155.
  • Li Y, Slavik MF, Walker JT, et al (1997): Pre-chill spray of chicken carcasses to reduce Salmonella Typhimurium. J Food Sci, 62, 605-607.
  • Loretz M, Stephan R, Zweifel C (2010): Antimicrobial activity of decontamination treatments for poultry carcasses: a literature survey. Food Control, 21, 791-804.
  • Luo Y, Wang Q (2013): Recent advances of chitosan and its derivatives for novel applications in food science. J Food Process & Bev, 1, 1-13.
  • Madushanka DNN, Jayaweera TSP, Jayasinghe JMCS et al (2018): Decontaminating effect of organic acids and natural compounds on broiler chicken meat contaminated with Salmonella Typhimurium. Asian Food Sci J, 3, 1-9.
  • Magdy OS, Moussa IM, Hussein HA, et al (2020): Genetic diversity of Salmonella enterica recovered from chickens farms and its potential transmission to human. J Infect Public Health, 13, 571-576.
  • Mani-López E, García HS, López-Malo A (2012): Organic acids as antimicrobials to control Salmonella in meat and poultry products. Food Res Int, 45, 713-721.
  • Menconi, A., Pumford, N. R., Morgan, et al (2014): Effect of chitosan on Salmonella Typhimurium in broiler chickens. Foodborne Pathog Dis, 11, 165-169.
  • Menconi A, Hernandez-Velasco X, Latorre JD et al (2013): Effect of chitosan as a biological sanitizer for Salmonella Typhimurium and aerobic gram negative spoilage bacteria present on chicken skin. Int J Poult Sci, 12, 318-321.
  • Mohamed HM, Abdel-Naeem HH (2018): Enhancing the bactericidal efficacy of lactic acid against Salmonella typhimurium attached to chicken skin by sodium dodecyl sulphate addition. LWT-Food Sci Technol, 87, 464-469.
  • Moradi M, Tajik H, No HK, et al (2010): Potential inherent properties of chitosan and its applications in preserving muscle food. J Chitin Chitosan, 15, 35-45.
  • Morin-Crini N, Lichtfouse E, Torri G et al (2019): Applications of chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology, and environmental chemistry. Environ Chem Lett, 17, 1667–1692.
  • Morshedy AEMA, Sallam KI (2009): Improving the microbial quality and shelf life of chicken carcasses by trisodium phosphate and lactic acid dipping. Int J Poult Sci, 8, 645-650.
  • Mulder RWAW, Van der Hulst MC, Bolder NM (1987): Research note: Salmonella decontamination of broiler carcasses with lactic acid, L-cysteine, and hydrogen peroxide. Poult Sci, 66, 1555-1557.
  • No HK, Meyers SP, Prinyawiwatkul W, et al (2007): Applications of chitosan for improvement of quality and shelf life of foods: a review. J Food Sci, 72, 87-100.
  • Okolocha EC, Ellerbroek L (2005): The influence of acid and alkaline treatments on pathogens and the shelf life of poultry meat. Food Control, 16, 217-225.
  • Park SH, Choi MR, Park JW, et al (2011): Use of organic acids to inactivate Escherichia coli O157: H7, Salmonella Typhimurium, and Listeria monocytogenes on organic fresh apples and lettuce. J Food Sci, 76, 293-298.
  • Petracci M, Bianchi M, Mudalal S, et al (2013): Functional ingredients for poultry meat products. Trends Food Sci Technol, 33, 27-39.
  • Rabea EI, Badawy MET, Stevens CV, et al (2003): Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules, 4, 1457-1465.
  • Rasschaert G, Houf K, De Zutter L (2007): Impact of the slaughter line contamination on the presence of Salmonella on broiler carcasses. J Appl Microbiol, 103, 333-341.
  • Rocha MAM, Coimbra MA, Nunes C (2017): Applications of chitosan and their derivatives in beverages: a critical review. Curr Opin Food Sci, 15, 61–69.
  • Rossler E, Olivero C, Lorena PS, et al (2020): Prevalence, genotypic diversity and detection of virulence genes in thermotolerant Campylobacter at different stages of the poultry meat supply chain. Int J Food Microbiol, 326, 108641.
  • Smulders F (1995): Preservation by microbial decontamination; the surface treatment of meats by organic acids. 253-282. In: GW Gould (Ed), New methods of food preservation. Blackie Academic and Professional, London.
  • Sofos JN, Smith GC (1998): Nonacid meat decontamination technologies: model studies and commercial applications. Int J Food Microbiol, 44, 171-188.
  • Şenel S, McClure SJ (2004): Potential applications of chitosan in veterinary medicine. Adv Drug Deliv Rev, 56, 1467-1480.
  • Tamblyn KC, Conner DE (1997): Bactericidal activity of organic acids against Salmonella Typhimurium attached to broiler chicken skint. J Food Prot, 60, 629-633.
  • Theron MM, Lues JF (2007): Organic acids and meat preservation: a review. Food Rev Int, 23, 141-158.
  • Trongjit S, Angkititrakul S, Tuttle RE, et al (2017): Prevalence and antimicrobial resistance in Salmonella enterica isolated from broiler chickens, pigs and meat products in Thailand–Cambodia border provinces. Microbiol Immunol, 61, 23-33.
  • Vargas M, González-Martínez C (2010): Recent patents on food applications of chitosan. Recent Pat Food Nutr Agric, 2, 121-128.
  • Wajid M, Awan AB, Saleemi MK, et al (2018): Multiple drug resistance and virulence profiling of Salmonella enterica serovars Typhimurium and Enteritidis from poultry farms of Faisalabad, Pakistan. Microb Drug Resist, 25, 133–143.
  • Witkowska D, Kuncewicz M, Żebrowska JP, et al (2018): Prevalence of Salmonella spp. in broiler chicken flocks in northern Poland in 2014-2016. Ann Agric Environ Med, 25, 693.
  • Xiong H, Li Y, Slavik MF et al (1998): Spraying chicken skin with selected chemicals to reduce attached Salmonella Typhimurium. J Food Prot, 61, 272-275.
  • Yang X, Huang J, Zhang Y, et al (2020): Prevalence, abundance, serovars and antimicrobial resistance of Salmonella isolated from retail raw poultry meat in China. Sci Total Environ, 713, 136385.
  • Yildirim Y, Gonulalan Z, Pamuk S, et al (2011): Incidence and antibiotic resistance of Salmonella spp. on raw chicken carcasses. Food Res Int, 44, 725–728.
  • Zargar V, Asghari M, Dashti A (2015): A review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives, and applications. Chem Bio Eng Reviews, 2, 204-226.
  • Zhao X, Hu M, Zhang Q, et al (2020): Prevalence and antimicrobial resistance of Salmonella isolated from broilers in Shandong, China. Avalaible at: https://doi.org/10.21203/rs.3.rs-17378/v1. (Accessed Sept 24, 2020).

Broiler karkaslarında Salmonella Typhimurium'un kitosan ve laktik asit ile dekontaminasyonu

Year 2021, Volume: 68 Issue: 4, 389 - 395, 27.09.2021
https://doi.org/10.33988/auvfd.801253

Abstract

References

  • Agırdemır O, Yurdakul O, Keyvan E, et al (2020): Effects of various chemical decontaminants on Salmonella Typhimurium survival in chicken carcasses. Food Sci Technol (Campinas).
  • Allerberger F (2016): Poultry and human infections. Clin Microbiol Infect, 22, 101-102.
  • Anonymus (2014): Salmonella ve Belirlenmiş Diğer Gıda Kaynaklı Zoonotik Etkenlerin Kontrol Altına Alınması Hakkında Yönetmelik. Avalaible at: https://www.resmigaze-te.gov.tr/eskiler/2014/03/20140327. pdf. (Accessed Sept 24, 2020).
  • Antunes P, Mourão J, Campos J, et al (2016): Salmonellosis: the role of poultry meat. Clin Microbiol Infect, 22, 110-121.
  • Aranaz I, Acosta N, Civera C, et al (2018): Cosmetics and cosmeceutical applications of chitin, chitosan and their derivatives. Polymers, 10, 213.
  • Bhoir SA, Jhaveri M, Chawla SP (2019): Evaluation and predictive modeling of the effect of chitosan and gamma irradiation on quality of stored chilled chicken meat. J Food Process Eng, 42, e13254.
  • Bolder NM (1997): Decontamination of meat and poultry carcasses. Trends Food Sci Technol, 8, 221-227.
  • Cardinale E, Tall F, Cisse M, et al (2005): Risk factors associated with Salmonella enterica subsp. enterica contamination of chicken carcases in Senegal. Br Poult Sci, 46, 293-299.
  • Castañeda-Gulla K, Sattlegger E, Mutukumira AN (2020): Persistent contamination of Salmonella, Campylobacter, Escherichia coli, and Staphylococcus aureus at a broiler farm in New Zealand. Can J Microbiol, 66, 171-185.
  • Cavani C, Petracci M, Trocino A, et al (2009): Advances in research on poultry and rabbit meat quality. Ital J Anim Sci, 8, 741-750.
  • Chang SH, Chen CH, Tsai GJ (2020): Effects of chitosan on Clostridium perfringens and application in the preservation of pork sausage. Mar Drugs, 18, 70.
  • Cheung RCF, Ng TB, Wong JH, et al (2015): Chitosan: an update on potential biomedical and pharmaceutical applications. Mar Drugs, 13, 5156-5186.
  • De Smet S, Vossen E (2016): Meat: The balance between nutrition and health. A review. Meat Sci, 120, 145-156.
  • El-Khawas KM, Mashat BH, Attala OA, et al (2020): Control of Salmonella and Escherichia coli in chilled chicken fillets using chitosan and lactic acid. CYTA J Food, 18, 445-450.
  • European Food Safety Authority and European Centre for Disease Prevention and Control-EFSA/ECDC (2018): The European Union summary report on trends and sources of zoonoses, zoonotic agents and food‐borne outbreaks in 2017. EFSA Journal, 16, e05500.
  • Foley SL, Nayak R, Hanning IB (2011): Population dynamics of Salmonella enterica serotypes in commercial egg and poultry production. Appl Environ Microbiol, 77, 4273-4279.
  • Food and Agriculture Organization-FAO (2006): Databases: Food Balance Sheets. Avalaible at: http://faostat.fao.org. (Accessed Sept 24, 2020).
  • Food and Agriculture Organization-FAO (2016): Bacteriological Analytical Manual, Chapter 5 Salmonella. Avalaible at: http://www.fda.gov/Food/FoodScienceRese-arch/LaboratoryMethods/ucm070149.html. (Accessed Sept 24, 2020).
  • Firouzabadi A, Saadati D, Najimi M, et al (2020): Prevalence and related factors of Salmonella spp. and Salmonella Typhimurium contamination among broiler farms in Kerman province, Iran. Prev Vet Med, 175, 104838.
  • Goncuoglu M, Ormanci FSB, Uludag M, et al (2016): Prevalence and antibiotic resistance of Salmonella spp. and Salmonella Typhimurium in broiler carcasses wings and liver. J Food Saf, 36, 524-531.
  • Gücükoğlu A, Çadırcı Ö, Gülel GT (2020): Serotyping and antibiotic resistance profile of Listeria monocytogenes isolated from organic chicken meat. Kafkas Univ Vet Fak Derg, 26, 499-505.
  • Heredia N, García S (2018): Animals as sources of food-borne pathogens: A review. Anim Nutr, 4, 250-255.
  • Herikstad H, Motarjemi Y, Tauxe RV (2002): Salmonella surveillance: a global survey of public health serotyping. Epidemiol Infect, 129, 1-8.
  • Hinton MH, Corry JEL (1999): The decontamination of carcass meat. 285-296. In: R Richardson (Ed), Poultry Meat Science. Oxon, Cabi Publishing.
  • Hoelzer K, Switt AIM, Wiedmann M (2011): Animal contact as a source of human non-typhoidal salmonellosis. Vet Res, 42, 34.
  • Huang RL, Yin YL, Wu GY, et al (2005): Effect of dietary oligochitosan supplementation on ileal digestibility of nutrients and performance in broilers. Poult Sci, 84, 1383-1388.
  • Huang RL, Deng ZY, Yang C et al (2007): Dietary oligochitosan supplementation enhances immune status of broilers. J Sci Food Agric, 87, 153-159.
  • Hwang C, Beuchat LR (1995): Efficacy of selected chemicals for killing pathogenic and spoilage microorganisms on chicken skin. J Food Prot, 58, 19-23.
  • Kabanov VL, Novinyuk LV (2020): Chitosan application in food technology: A review of rescent advances. Food Systems, 3, 10-15.
  • Kong M, Chen XG, Xing K (2010): Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol, 144, 51-63.
  • Kuang X, Hao H, Dai M (2015): Serotypes and antimicrobial susceptibility of Salmonella spp. isolated from farm animals in China. Front Microbiol, 6, 1-11.
  • Lim YH, Hirose K, Izumiya H, et al (2003): Multiplex polymerase chain reaction assay for selective detection of Salmonella enterica serovar Typhimurium. Jpn J Infect Dis, 56, 151-155.
  • Li Y, Slavik MF, Walker JT, et al (1997): Pre-chill spray of chicken carcasses to reduce Salmonella Typhimurium. J Food Sci, 62, 605-607.
  • Loretz M, Stephan R, Zweifel C (2010): Antimicrobial activity of decontamination treatments for poultry carcasses: a literature survey. Food Control, 21, 791-804.
  • Luo Y, Wang Q (2013): Recent advances of chitosan and its derivatives for novel applications in food science. J Food Process & Bev, 1, 1-13.
  • Madushanka DNN, Jayaweera TSP, Jayasinghe JMCS et al (2018): Decontaminating effect of organic acids and natural compounds on broiler chicken meat contaminated with Salmonella Typhimurium. Asian Food Sci J, 3, 1-9.
  • Magdy OS, Moussa IM, Hussein HA, et al (2020): Genetic diversity of Salmonella enterica recovered from chickens farms and its potential transmission to human. J Infect Public Health, 13, 571-576.
  • Mani-López E, García HS, López-Malo A (2012): Organic acids as antimicrobials to control Salmonella in meat and poultry products. Food Res Int, 45, 713-721.
  • Menconi, A., Pumford, N. R., Morgan, et al (2014): Effect of chitosan on Salmonella Typhimurium in broiler chickens. Foodborne Pathog Dis, 11, 165-169.
  • Menconi A, Hernandez-Velasco X, Latorre JD et al (2013): Effect of chitosan as a biological sanitizer for Salmonella Typhimurium and aerobic gram negative spoilage bacteria present on chicken skin. Int J Poult Sci, 12, 318-321.
  • Mohamed HM, Abdel-Naeem HH (2018): Enhancing the bactericidal efficacy of lactic acid against Salmonella typhimurium attached to chicken skin by sodium dodecyl sulphate addition. LWT-Food Sci Technol, 87, 464-469.
  • Moradi M, Tajik H, No HK, et al (2010): Potential inherent properties of chitosan and its applications in preserving muscle food. J Chitin Chitosan, 15, 35-45.
  • Morin-Crini N, Lichtfouse E, Torri G et al (2019): Applications of chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology, and environmental chemistry. Environ Chem Lett, 17, 1667–1692.
  • Morshedy AEMA, Sallam KI (2009): Improving the microbial quality and shelf life of chicken carcasses by trisodium phosphate and lactic acid dipping. Int J Poult Sci, 8, 645-650.
  • Mulder RWAW, Van der Hulst MC, Bolder NM (1987): Research note: Salmonella decontamination of broiler carcasses with lactic acid, L-cysteine, and hydrogen peroxide. Poult Sci, 66, 1555-1557.
  • No HK, Meyers SP, Prinyawiwatkul W, et al (2007): Applications of chitosan for improvement of quality and shelf life of foods: a review. J Food Sci, 72, 87-100.
  • Okolocha EC, Ellerbroek L (2005): The influence of acid and alkaline treatments on pathogens and the shelf life of poultry meat. Food Control, 16, 217-225.
  • Park SH, Choi MR, Park JW, et al (2011): Use of organic acids to inactivate Escherichia coli O157: H7, Salmonella Typhimurium, and Listeria monocytogenes on organic fresh apples and lettuce. J Food Sci, 76, 293-298.
  • Petracci M, Bianchi M, Mudalal S, et al (2013): Functional ingredients for poultry meat products. Trends Food Sci Technol, 33, 27-39.
  • Rabea EI, Badawy MET, Stevens CV, et al (2003): Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules, 4, 1457-1465.
  • Rasschaert G, Houf K, De Zutter L (2007): Impact of the slaughter line contamination on the presence of Salmonella on broiler carcasses. J Appl Microbiol, 103, 333-341.
  • Rocha MAM, Coimbra MA, Nunes C (2017): Applications of chitosan and their derivatives in beverages: a critical review. Curr Opin Food Sci, 15, 61–69.
  • Rossler E, Olivero C, Lorena PS, et al (2020): Prevalence, genotypic diversity and detection of virulence genes in thermotolerant Campylobacter at different stages of the poultry meat supply chain. Int J Food Microbiol, 326, 108641.
  • Smulders F (1995): Preservation by microbial decontamination; the surface treatment of meats by organic acids. 253-282. In: GW Gould (Ed), New methods of food preservation. Blackie Academic and Professional, London.
  • Sofos JN, Smith GC (1998): Nonacid meat decontamination technologies: model studies and commercial applications. Int J Food Microbiol, 44, 171-188.
  • Şenel S, McClure SJ (2004): Potential applications of chitosan in veterinary medicine. Adv Drug Deliv Rev, 56, 1467-1480.
  • Tamblyn KC, Conner DE (1997): Bactericidal activity of organic acids against Salmonella Typhimurium attached to broiler chicken skint. J Food Prot, 60, 629-633.
  • Theron MM, Lues JF (2007): Organic acids and meat preservation: a review. Food Rev Int, 23, 141-158.
  • Trongjit S, Angkititrakul S, Tuttle RE, et al (2017): Prevalence and antimicrobial resistance in Salmonella enterica isolated from broiler chickens, pigs and meat products in Thailand–Cambodia border provinces. Microbiol Immunol, 61, 23-33.
  • Vargas M, González-Martínez C (2010): Recent patents on food applications of chitosan. Recent Pat Food Nutr Agric, 2, 121-128.
  • Wajid M, Awan AB, Saleemi MK, et al (2018): Multiple drug resistance and virulence profiling of Salmonella enterica serovars Typhimurium and Enteritidis from poultry farms of Faisalabad, Pakistan. Microb Drug Resist, 25, 133–143.
  • Witkowska D, Kuncewicz M, Żebrowska JP, et al (2018): Prevalence of Salmonella spp. in broiler chicken flocks in northern Poland in 2014-2016. Ann Agric Environ Med, 25, 693.
  • Xiong H, Li Y, Slavik MF et al (1998): Spraying chicken skin with selected chemicals to reduce attached Salmonella Typhimurium. J Food Prot, 61, 272-275.
  • Yang X, Huang J, Zhang Y, et al (2020): Prevalence, abundance, serovars and antimicrobial resistance of Salmonella isolated from retail raw poultry meat in China. Sci Total Environ, 713, 136385.
  • Yildirim Y, Gonulalan Z, Pamuk S, et al (2011): Incidence and antibiotic resistance of Salmonella spp. on raw chicken carcasses. Food Res Int, 44, 725–728.
  • Zargar V, Asghari M, Dashti A (2015): A review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives, and applications. Chem Bio Eng Reviews, 2, 204-226.
  • Zhao X, Hu M, Zhang Q, et al (2020): Prevalence and antimicrobial resistance of Salmonella isolated from broilers in Shandong, China. Avalaible at: https://doi.org/10.21203/rs.3.rs-17378/v1. (Accessed Sept 24, 2020).
There are 67 citations in total.

Details

Primary Language English
Subjects Veterinary Surgery
Journal Section Research Article
Authors

Zeynep Kaplan 0000-0002-0252-1489

Ozen Yurdakul 0000-0001-7680-015X

Erhan Keyvan 0000-0002-2981-437X

Erdi Şen 0000-0002-5140-3833

Publication Date September 27, 2021
Published in Issue Year 2021Volume: 68 Issue: 4

Cite

APA Kaplan, Z., Yurdakul, O., Keyvan, E., Şen, E. (2021). Decontamination of Salmonella Typhimurium with chitosan and lactic acid on broiler carcasses. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 68(4), 389-395. https://doi.org/10.33988/auvfd.801253
AMA Kaplan Z, Yurdakul O, Keyvan E, Şen E. Decontamination of Salmonella Typhimurium with chitosan and lactic acid on broiler carcasses. Ankara Univ Vet Fak Derg. September 2021;68(4):389-395. doi:10.33988/auvfd.801253
Chicago Kaplan, Zeynep, Ozen Yurdakul, Erhan Keyvan, and Erdi Şen. “Decontamination of Salmonella Typhimurium With Chitosan and Lactic Acid on Broiler Carcasses”. Ankara Üniversitesi Veteriner Fakültesi Dergisi 68, no. 4 (September 2021): 389-95. https://doi.org/10.33988/auvfd.801253.
EndNote Kaplan Z, Yurdakul O, Keyvan E, Şen E (September 1, 2021) Decontamination of Salmonella Typhimurium with chitosan and lactic acid on broiler carcasses. Ankara Üniversitesi Veteriner Fakültesi Dergisi 68 4 389–395.
IEEE Z. Kaplan, O. Yurdakul, E. Keyvan, and E. Şen, “Decontamination of Salmonella Typhimurium with chitosan and lactic acid on broiler carcasses”, Ankara Univ Vet Fak Derg, vol. 68, no. 4, pp. 389–395, 2021, doi: 10.33988/auvfd.801253.
ISNAD Kaplan, Zeynep et al. “Decontamination of Salmonella Typhimurium With Chitosan and Lactic Acid on Broiler Carcasses”. Ankara Üniversitesi Veteriner Fakültesi Dergisi 68/4 (September 2021), 389-395. https://doi.org/10.33988/auvfd.801253.
JAMA Kaplan Z, Yurdakul O, Keyvan E, Şen E. Decontamination of Salmonella Typhimurium with chitosan and lactic acid on broiler carcasses. Ankara Univ Vet Fak Derg. 2021;68:389–395.
MLA Kaplan, Zeynep et al. “Decontamination of Salmonella Typhimurium With Chitosan and Lactic Acid on Broiler Carcasses”. Ankara Üniversitesi Veteriner Fakültesi Dergisi, vol. 68, no. 4, 2021, pp. 389-95, doi:10.33988/auvfd.801253.
Vancouver Kaplan Z, Yurdakul O, Keyvan E, Şen E. Decontamination of Salmonella Typhimurium with chitosan and lactic acid on broiler carcasses. Ankara Univ Vet Fak Derg. 2021;68(4):389-95.