Research Article
BibTex RIS Cite

First detection of carbapenem resistance in Enterobacteriaceae isolates isolated from dairy cows’ mastitis infection in Türkiye

Year 2023, Volume: 70 Issue: 1, 65 - 74, 30.12.2022
https://doi.org/10.33988/auvfd.828306

Abstract

With this study, carbapenem resistance genes were declared for the first time in Enterobacteriaceae isolates isolated from dairy cows’ mastitis infection in Türkiye. In the bacteriological examination of 212 milk samples, 14 (6.60%) E. coli, three (1.41%) Klebsiella oxytoca, and two (0.94%) Klebsiella pneumonia were isolated. At least two E. coli isolates were found to be resistant to all of the antibiotics used in the antibiogram test. The highest resistance was found against cefotaxime and amoxicillin in K. oxytoca isolates. According to the results of PCR targeting blaCTX-M, blaTEM, and blaSHV genes, the blaCTX-M gene was detected in one K. oxytoca and four E. coli isolates, which were found ESBL positive. According to the results of PCR targeting carbapenem and colistin resistance genes, the IMP gene was detected in four E.coli, one K. oxytoca, and one K. pneumonia isolates. OXA-48-like gene was detected in two E. coli isolates. This two E. coli isolates were also IMP gene positive. While NDM gene was detected in two E. coli, KPC gene was detected in one E. coli isolate. One of the colistin resistance genes, mcr-1 was detected in two E.coli strains with PCR. This study showed that ESBL production and carbapenem resistance in Enterobacteriaceae family strains to become prevalent and increasing, especially among E. coli isolates. Furthermore, identification of multiple antibiotic resistance in the isolates indicated that antibiotic resistance also spread rapidly and increased.

Thanks

The author would like to thank the Republic of Turkey Ministry of Health General Directorate of Public Health Microbiology Reference Laboratory for supplied the control strains used in this study amd supportted to identification of a few colonies.

References

  • Al S, Hızlısoy H, Ertaş Onmaz E, et al (2020): A molecular investigation of carbapenem resistant Enterobacteriaceae and blaKPC, blaNDM and blaOXA-48 genes in raw milk. Kafkas Univ Vet Fak Derg, 26, 391-396.
  • Albiger B, Glasner C, Struelens MJ, et al (2015): Carbapenemase-producing Enterobacteriaceae in Europe: assessment by national experts from 38 countries, May 2015. Euro Surveill, 20.
  • Alonso CA, Zarazaga M, Ben Sallem R, et al (2017): Antibiotic resistance in Escherichia coli in husbandry animals: the African perspective. Lett App Microbiol, 64, 318–334.
  • Aslantaş Ö, Elmacıoğlu S, Yılmaz EŞ (2017): Prevalence and characterization of ESBL- and AmpC-producing Escherichia coli from cattle. Kafkas Univ Vet Fak Derg, 23, 63-67.
  • Baraniak A, Izdebski R, Fiett J, et al (2016): NDM-producing Enterobacteriaceae in Poland, 2012-2014: interregional outbreak of Klebsiella pneumoniae ST11 and sporadic cases. J Antimicrob Chemother, 71, 85-91.
  • Bauer AW, Kirby WM, Sherris JC, et al (1966): Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol, 45, 493- 496.
  • Bektaş A, Güdücüoğlu H, Gürsoy NC, et al (2018): Investigation of extended spectrum beta-lactamase (esbl) genes in esbl-producing Escherichia coli and Klebsiella pneumoniae strains. Flora, 23, 116-123.
  • Bhat AM, Soodan JS, Singh R, et al (2017): Incidence of bovine clinical mastitis in Jammu region and antibiogram of isolated pathogens. Vet World, 10, 984–989.
  • Bradford PA (2001): Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev, 14, 933-951.
  • Bratu S, Landman D, Haag R, et al (2005): Rapid spread of carbapenem-resistant Klebsiella pneumoniae in New York City: a new threat to our antibiotic armamentarium. Arch Intern Med, 165, 1430-1435.
  • Bush K, Jacoby GA, Medeiros AA (1995): A functional classification scheme for β -lactamases and its correlation with molecular structure. Antimicrob Agents Chemother, 139, 211-1233.
  • Codjoe FS, Donkor ES (2018): Carbapenem resistance: A review. Med Sci, 6, 1-28.
  • Cantón R, Akóva M, Carmeli Y, et al (2012): Rapid evolution and spread of carbapenemases among Enterobacteriaceae in Europe. Clin Microbiol Infect, 18, 413-431.
  • Cantón R, Novais A, Valverde A, et al (2008): Prevalence and spread of extendedspectrum β-lactamase-producing Enterobacteriaceae in Europe. Clin Microbiol Infect, 14, 144-153.
  • Carattoli A (2008): Animal reservoirs for extended-spectrum β-lactamase producers. Clin Microbiol Infect, 14, 117-123.
  • Clinical and Laboratory Standards Institute (CLSI) (2014): Performance standards for antimicrobial susceptibility testing; twenty forth informational supplement M100-S24. (Vol. 34, No. 1). Wayne, PA, USA.
  • Clinical and Laboratory Standards Institute (CLSI) (2017): Performance standards for antimicrobial susceptibility testing; 24th Informational Supplement M100-S26. Wayne, PA, USA.
  • Clinical and Laboratory Standards Institute (CLSI) (2018): Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals. 5th ed. CLSI standard VET01. Wayne, PA, USA.
  • Clinical and Laboratory Standards Institute (CLSI) (2018): Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals. 5th ed. CLSI standard VET08 ED4. Wayne, PA, USA.
  • De Jong A, El Garch F, Simjee S, et al (2018): Monitoring of antimicrobial susceptibility of udder pathogens recovered from cases of clinical mastitis in dairy cows across Europe: VetPath results. Vet Microbiol, 213, 73–81, 2018.
  • De Schmitt-van Leemput E, Zadoks RN (2007): Genotypic and phenotypic detection of macrolide and lincosamide resistance in Streptococcus uberis. Dairy Sci, 90, 5089–5096.
  • Dinç G, Ata Z, Temelli S (2012): Investigation of extended-spectrum beta-laktamase activity and antibiotic resistance profile of Escherichia coli strains isolated from bovine mastitis. Ank Univ Vet Fak Derg, 59, 85-88.
  • Effendi MH, Harijani N (2019): Prevalence of pathogenic Escherichia coli isolated from subclinical mastitis in east java province, Indonesia. Indian Vet J, 96, 22-25.
  • Eisenberger D, Carl A, Balsliemke J, et al (2018): Molecular characterization of extended-spectrum b-lactamase-producing Escherichia coli isolates from milk samples of dairy cows with mastitis in Bavaria, Germany. Microb Drug Resist, 24, 505-510.
  • European Centres for Disease Prevention and Control (ECDC) (2014): Antimicrobial resistance surveillance in Europe 2014. Annual report of the European Antimicrobial Resistance Surveillance Network (EARS-Net).
  • European Committee on Antimicrobial Susceptability Testing (EUCAST) (2017): Breakpoint tables for interpretation of MICs and zone diameters. Version 9.0. Available at http://www.eucast.org/fileadmin/src/media/ PDFs/EUCAST_files/ Breakpoint_tables/v_9.0_Breakpoint_ Tables.pdf. (Accessed September 29, 2020).
  • European Committee on Antimicrobial Susceptibility Testing (EUCAST) (2019): EUCAST guidelines for detection of resistance mechanisms and specific resistances of clinical and/or epidemiological importance. Version 2.0. Available at https://www.eucast.org/fileadmin/src/media/ PDFs/EUCAST_files/Resistance_mechanisms/EUCAST_detection_of_resistance_mechanisms_170711.pdf. (Accessed September 29, 2020).
  • Flioussis G, Kachrimanidou M, Christodoulopoulos G, et al (2020): Bovine mastitis caused by a multidrug-resistant, mcr-1-positive (colistin-resistant), extended-spectrum β-lactamase– producing Escherichia coli clone on a Greek dairy farm. J Dairy Sci, 103, 852-857.
  • Fouad Z (2011): Antimicrobial Disk Diffusion Zone Interpretation Guide. Available at https://doi.org/10.13140/ RG.2.2.13801.70240. (Accessed September 29, 2020).
  • Gao X, Fan C, Zhang Z, et al (2019): Enterococcal isolates from bovine subclinical and clinical mastitis: Antimicrobial resistance and integron-gene cassette distribution. Microb Pathog, 129, 82–87.
  • Gemechu T, Yunus HA, Soma M, et al (2019): Bovine mastitis: prevalence, isolation and identification of major bacterial pathogens in selected areas of Bench Maji Zone Southwest Ethiopia. J Vet Med Anim Health, 11, 30-36.
  • Hatrongjit R, Kerdsin A, Akeda Y, et al (2018): Detection of plasmid-mediated colistin-resistant and carbapenem-resistant genes by multiplex PCR. MethodsX, 5, 532- 536.
  • Horpiencharoen W, Thongratsakul S, Poolkhet C (2019): Risk factors of clinical mastitis and antimicrobial susceptibility test results of mastitis milk from dairy cattle in western Thailand: Bayesian network analysis. Prevent Vet Med, 164, 49–55.
  • Jayarao B, Almeida R, Oliver SP (2019): Antimicrobial resistance on dairy farms. Foodborne Pathog Dis, 16, 1–4.
  • Klibi A, Jouini A, Boubaker El Andolsi R, et al (2019): Epidemiology of β-lactamase-producing staphylococci and gram negative bacteria as cause of clinical bovine mastitis in Tunisia. Biomed Res Int, 2019, 1–9.
  • Köck R, Daniels-Haardt I, Becker K, et al (2018): Carbapenem-resistant Enterobacteriaceae in wildlife, food-producing, and companion animals: a systematic review. Clin Microbiol Infect, 24, 1241-1250.
  • Krömker V, Leimbach S (2017): Mastitis treatment-reduction in antibiotic usage in dairy cows. Reprod Domest Anim, 52, 21–29.
  • Laven R (2013): Treatment of E. coli mastitis: are antibiotics needed? Livestock, 18, 59-61.
  • Livermore DM, Cantón R, Gniadkowski M, et al (2007): CTX-M: changing the face of ESBLs in Europe. J Antimicrob Chemother, 59, 165-174.
  • Livermore DM (1995): β-Lactamases in laboratory and clinical resistance. Clin Microbiol Rev, 8, 557-584.
  • Makolo D, Suleiman AB, Olonitola OS, et al (2019): Antimicrobial Susceptibility Profile of Coliforms from Bovine Mastitis Cases among Pastoral Herds in Parts of Kaduna State , Nigeria : Curbing the Environmental Health Risk. Asian J Adv Res Rep, 3, 1–12.
  • Manasa V, Venkata Sai Kumar T, Prasada Rao T, et al (2019): Incidence of bovine clinical mastitis caused by Escherichia coli. Int J Curr Microbiol Appl Sci, 8, 1249–1256.
  • Marchaim D, Navon-Venezia S, Schwaber MJ, et al (2008): Isolation of imipenem-resistant Enterobacter species: emergence of KPC-2 carbapenemase, molecular characterization, epidemiology, and outcomes. Antimicrob Agents Chemother, 52, 1413-1418.
  • Messele YE, Abdi RD, Tegegne DT, et al (2019): Analysis of milk-derived isolates of E. coli indicating drug resistance in central Ethiopia. Trop Anim Health Pro, 51, 661–667.
  • Naas T, Poirel L, Nordmann P (2008): Minor extended-spectrum β-lactamases. Clin Microbiol Infect, 14, 42-52.
  • Nordmann P, Poirel L (2019): Epidemiology and diagnostics of carbapenem resistance in Gram- negative bacteria. Clin Infect Dis, 69, 521-528.
  • Nordmann P, Naas T, Poirel L (2011): Global spread of Carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis, 17, 1791-1798.
  • Nüesch-Inderbinen M, Kappeli N, Morach M, et al (2019): Molecular types, virulence profiles and antimicrobial resistance of Escherichia coli causing bovine mastitis. Vet Rec Open, 6, 1-9.
  • Palmeria JD, Ferreira NDM (2020): Extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae in cattle production – a threat around the world. Heliyon, 6, e03206.
  • Pamipuntu N, Pamipuntu S (2020): Detection of antimicrobial resistance genes of carbapenem-resistant Enterobacteriaceae in Escherichia coli isolated from the water supply of smallholder dairy farms in Saraburi and Maha Sarakham, Thailand. Int J of One Health, 6, 1-5.
  • Pehlivanoğlu F, Türütoğlu H, Öztürk D, et al (2017): Characterization of extended- spectrum beta-lactamase-producing fecal Escherichia coli isolates in laying hens. Ank Univ Vet Fak Derg, 64, 301–306.
  • Pillar CM, Stoneburner A, Shinabarger DL, et al (2014): In vitro susceptibility of bovine mastitis pathogens to a combination of penicillin and framycetin: development of interpretive criteria for testing by broth microdilution and disk diffusion. Dairy Sci, 97, 6594–6607.
  • Quinn PJ, Markey BK, Leonard FC, et al (2004): Veterinary Microbiology and Microbial Disease. Second Edition, Blackwell Science Ltd, Oxford.
  • Šlosárková S, Nedbalcová K, Bzdil J, et al (2019): Antimicrobial susceptibility of streptococci most frequently isolated from Czech dairy cows with mastitis. Ann Anim Sci, 19, 679–694.
  • Souli M, Galani I, Antoniadou A, et al (2010): An outbreak of infection due to βlactamase Klebsiella pneumoniae carbapenemase 2-producing K. pneumoniae in a Greek University Hospital: molecular characterization, epidemiology, and outcomes. Clin Infect Dis, 50, 364–373.
  • Vatopoulos A (2008): High rates of metallo-β-lactamase-producing Klebsiella pneumoniae in Greece – a review of the current evidence. Euro Surveill, 13, 8023.
  • World Health Organisation (2017): Available at http://www.who.int/drugresistance/documents/surveillancereport/en./. (Accessed October 29, 2019).
  • Zhang D, Zhang Z, Huang C, et al (2018): The phylogenetic group, antimicrobial susceptibility, and virulence genes of Escherichia coli from clinical bovine mastitis. Dairy Sci, 101, 572–580.
Year 2023, Volume: 70 Issue: 1, 65 - 74, 30.12.2022
https://doi.org/10.33988/auvfd.828306

Abstract

References

  • Al S, Hızlısoy H, Ertaş Onmaz E, et al (2020): A molecular investigation of carbapenem resistant Enterobacteriaceae and blaKPC, blaNDM and blaOXA-48 genes in raw milk. Kafkas Univ Vet Fak Derg, 26, 391-396.
  • Albiger B, Glasner C, Struelens MJ, et al (2015): Carbapenemase-producing Enterobacteriaceae in Europe: assessment by national experts from 38 countries, May 2015. Euro Surveill, 20.
  • Alonso CA, Zarazaga M, Ben Sallem R, et al (2017): Antibiotic resistance in Escherichia coli in husbandry animals: the African perspective. Lett App Microbiol, 64, 318–334.
  • Aslantaş Ö, Elmacıoğlu S, Yılmaz EŞ (2017): Prevalence and characterization of ESBL- and AmpC-producing Escherichia coli from cattle. Kafkas Univ Vet Fak Derg, 23, 63-67.
  • Baraniak A, Izdebski R, Fiett J, et al (2016): NDM-producing Enterobacteriaceae in Poland, 2012-2014: interregional outbreak of Klebsiella pneumoniae ST11 and sporadic cases. J Antimicrob Chemother, 71, 85-91.
  • Bauer AW, Kirby WM, Sherris JC, et al (1966): Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol, 45, 493- 496.
  • Bektaş A, Güdücüoğlu H, Gürsoy NC, et al (2018): Investigation of extended spectrum beta-lactamase (esbl) genes in esbl-producing Escherichia coli and Klebsiella pneumoniae strains. Flora, 23, 116-123.
  • Bhat AM, Soodan JS, Singh R, et al (2017): Incidence of bovine clinical mastitis in Jammu region and antibiogram of isolated pathogens. Vet World, 10, 984–989.
  • Bradford PA (2001): Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev, 14, 933-951.
  • Bratu S, Landman D, Haag R, et al (2005): Rapid spread of carbapenem-resistant Klebsiella pneumoniae in New York City: a new threat to our antibiotic armamentarium. Arch Intern Med, 165, 1430-1435.
  • Bush K, Jacoby GA, Medeiros AA (1995): A functional classification scheme for β -lactamases and its correlation with molecular structure. Antimicrob Agents Chemother, 139, 211-1233.
  • Codjoe FS, Donkor ES (2018): Carbapenem resistance: A review. Med Sci, 6, 1-28.
  • Cantón R, Akóva M, Carmeli Y, et al (2012): Rapid evolution and spread of carbapenemases among Enterobacteriaceae in Europe. Clin Microbiol Infect, 18, 413-431.
  • Cantón R, Novais A, Valverde A, et al (2008): Prevalence and spread of extendedspectrum β-lactamase-producing Enterobacteriaceae in Europe. Clin Microbiol Infect, 14, 144-153.
  • Carattoli A (2008): Animal reservoirs for extended-spectrum β-lactamase producers. Clin Microbiol Infect, 14, 117-123.
  • Clinical and Laboratory Standards Institute (CLSI) (2014): Performance standards for antimicrobial susceptibility testing; twenty forth informational supplement M100-S24. (Vol. 34, No. 1). Wayne, PA, USA.
  • Clinical and Laboratory Standards Institute (CLSI) (2017): Performance standards for antimicrobial susceptibility testing; 24th Informational Supplement M100-S26. Wayne, PA, USA.
  • Clinical and Laboratory Standards Institute (CLSI) (2018): Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals. 5th ed. CLSI standard VET01. Wayne, PA, USA.
  • Clinical and Laboratory Standards Institute (CLSI) (2018): Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals. 5th ed. CLSI standard VET08 ED4. Wayne, PA, USA.
  • De Jong A, El Garch F, Simjee S, et al (2018): Monitoring of antimicrobial susceptibility of udder pathogens recovered from cases of clinical mastitis in dairy cows across Europe: VetPath results. Vet Microbiol, 213, 73–81, 2018.
  • De Schmitt-van Leemput E, Zadoks RN (2007): Genotypic and phenotypic detection of macrolide and lincosamide resistance in Streptococcus uberis. Dairy Sci, 90, 5089–5096.
  • Dinç G, Ata Z, Temelli S (2012): Investigation of extended-spectrum beta-laktamase activity and antibiotic resistance profile of Escherichia coli strains isolated from bovine mastitis. Ank Univ Vet Fak Derg, 59, 85-88.
  • Effendi MH, Harijani N (2019): Prevalence of pathogenic Escherichia coli isolated from subclinical mastitis in east java province, Indonesia. Indian Vet J, 96, 22-25.
  • Eisenberger D, Carl A, Balsliemke J, et al (2018): Molecular characterization of extended-spectrum b-lactamase-producing Escherichia coli isolates from milk samples of dairy cows with mastitis in Bavaria, Germany. Microb Drug Resist, 24, 505-510.
  • European Centres for Disease Prevention and Control (ECDC) (2014): Antimicrobial resistance surveillance in Europe 2014. Annual report of the European Antimicrobial Resistance Surveillance Network (EARS-Net).
  • European Committee on Antimicrobial Susceptability Testing (EUCAST) (2017): Breakpoint tables for interpretation of MICs and zone diameters. Version 9.0. Available at http://www.eucast.org/fileadmin/src/media/ PDFs/EUCAST_files/ Breakpoint_tables/v_9.0_Breakpoint_ Tables.pdf. (Accessed September 29, 2020).
  • European Committee on Antimicrobial Susceptibility Testing (EUCAST) (2019): EUCAST guidelines for detection of resistance mechanisms and specific resistances of clinical and/or epidemiological importance. Version 2.0. Available at https://www.eucast.org/fileadmin/src/media/ PDFs/EUCAST_files/Resistance_mechanisms/EUCAST_detection_of_resistance_mechanisms_170711.pdf. (Accessed September 29, 2020).
  • Flioussis G, Kachrimanidou M, Christodoulopoulos G, et al (2020): Bovine mastitis caused by a multidrug-resistant, mcr-1-positive (colistin-resistant), extended-spectrum β-lactamase– producing Escherichia coli clone on a Greek dairy farm. J Dairy Sci, 103, 852-857.
  • Fouad Z (2011): Antimicrobial Disk Diffusion Zone Interpretation Guide. Available at https://doi.org/10.13140/ RG.2.2.13801.70240. (Accessed September 29, 2020).
  • Gao X, Fan C, Zhang Z, et al (2019): Enterococcal isolates from bovine subclinical and clinical mastitis: Antimicrobial resistance and integron-gene cassette distribution. Microb Pathog, 129, 82–87.
  • Gemechu T, Yunus HA, Soma M, et al (2019): Bovine mastitis: prevalence, isolation and identification of major bacterial pathogens in selected areas of Bench Maji Zone Southwest Ethiopia. J Vet Med Anim Health, 11, 30-36.
  • Hatrongjit R, Kerdsin A, Akeda Y, et al (2018): Detection of plasmid-mediated colistin-resistant and carbapenem-resistant genes by multiplex PCR. MethodsX, 5, 532- 536.
  • Horpiencharoen W, Thongratsakul S, Poolkhet C (2019): Risk factors of clinical mastitis and antimicrobial susceptibility test results of mastitis milk from dairy cattle in western Thailand: Bayesian network analysis. Prevent Vet Med, 164, 49–55.
  • Jayarao B, Almeida R, Oliver SP (2019): Antimicrobial resistance on dairy farms. Foodborne Pathog Dis, 16, 1–4.
  • Klibi A, Jouini A, Boubaker El Andolsi R, et al (2019): Epidemiology of β-lactamase-producing staphylococci and gram negative bacteria as cause of clinical bovine mastitis in Tunisia. Biomed Res Int, 2019, 1–9.
  • Köck R, Daniels-Haardt I, Becker K, et al (2018): Carbapenem-resistant Enterobacteriaceae in wildlife, food-producing, and companion animals: a systematic review. Clin Microbiol Infect, 24, 1241-1250.
  • Krömker V, Leimbach S (2017): Mastitis treatment-reduction in antibiotic usage in dairy cows. Reprod Domest Anim, 52, 21–29.
  • Laven R (2013): Treatment of E. coli mastitis: are antibiotics needed? Livestock, 18, 59-61.
  • Livermore DM, Cantón R, Gniadkowski M, et al (2007): CTX-M: changing the face of ESBLs in Europe. J Antimicrob Chemother, 59, 165-174.
  • Livermore DM (1995): β-Lactamases in laboratory and clinical resistance. Clin Microbiol Rev, 8, 557-584.
  • Makolo D, Suleiman AB, Olonitola OS, et al (2019): Antimicrobial Susceptibility Profile of Coliforms from Bovine Mastitis Cases among Pastoral Herds in Parts of Kaduna State , Nigeria : Curbing the Environmental Health Risk. Asian J Adv Res Rep, 3, 1–12.
  • Manasa V, Venkata Sai Kumar T, Prasada Rao T, et al (2019): Incidence of bovine clinical mastitis caused by Escherichia coli. Int J Curr Microbiol Appl Sci, 8, 1249–1256.
  • Marchaim D, Navon-Venezia S, Schwaber MJ, et al (2008): Isolation of imipenem-resistant Enterobacter species: emergence of KPC-2 carbapenemase, molecular characterization, epidemiology, and outcomes. Antimicrob Agents Chemother, 52, 1413-1418.
  • Messele YE, Abdi RD, Tegegne DT, et al (2019): Analysis of milk-derived isolates of E. coli indicating drug resistance in central Ethiopia. Trop Anim Health Pro, 51, 661–667.
  • Naas T, Poirel L, Nordmann P (2008): Minor extended-spectrum β-lactamases. Clin Microbiol Infect, 14, 42-52.
  • Nordmann P, Poirel L (2019): Epidemiology and diagnostics of carbapenem resistance in Gram- negative bacteria. Clin Infect Dis, 69, 521-528.
  • Nordmann P, Naas T, Poirel L (2011): Global spread of Carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis, 17, 1791-1798.
  • Nüesch-Inderbinen M, Kappeli N, Morach M, et al (2019): Molecular types, virulence profiles and antimicrobial resistance of Escherichia coli causing bovine mastitis. Vet Rec Open, 6, 1-9.
  • Palmeria JD, Ferreira NDM (2020): Extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae in cattle production – a threat around the world. Heliyon, 6, e03206.
  • Pamipuntu N, Pamipuntu S (2020): Detection of antimicrobial resistance genes of carbapenem-resistant Enterobacteriaceae in Escherichia coli isolated from the water supply of smallholder dairy farms in Saraburi and Maha Sarakham, Thailand. Int J of One Health, 6, 1-5.
  • Pehlivanoğlu F, Türütoğlu H, Öztürk D, et al (2017): Characterization of extended- spectrum beta-lactamase-producing fecal Escherichia coli isolates in laying hens. Ank Univ Vet Fak Derg, 64, 301–306.
  • Pillar CM, Stoneburner A, Shinabarger DL, et al (2014): In vitro susceptibility of bovine mastitis pathogens to a combination of penicillin and framycetin: development of interpretive criteria for testing by broth microdilution and disk diffusion. Dairy Sci, 97, 6594–6607.
  • Quinn PJ, Markey BK, Leonard FC, et al (2004): Veterinary Microbiology and Microbial Disease. Second Edition, Blackwell Science Ltd, Oxford.
  • Šlosárková S, Nedbalcová K, Bzdil J, et al (2019): Antimicrobial susceptibility of streptococci most frequently isolated from Czech dairy cows with mastitis. Ann Anim Sci, 19, 679–694.
  • Souli M, Galani I, Antoniadou A, et al (2010): An outbreak of infection due to βlactamase Klebsiella pneumoniae carbapenemase 2-producing K. pneumoniae in a Greek University Hospital: molecular characterization, epidemiology, and outcomes. Clin Infect Dis, 50, 364–373.
  • Vatopoulos A (2008): High rates of metallo-β-lactamase-producing Klebsiella pneumoniae in Greece – a review of the current evidence. Euro Surveill, 13, 8023.
  • World Health Organisation (2017): Available at http://www.who.int/drugresistance/documents/surveillancereport/en./. (Accessed October 29, 2019).
  • Zhang D, Zhang Z, Huang C, et al (2018): The phylogenetic group, antimicrobial susceptibility, and virulence genes of Escherichia coli from clinical bovine mastitis. Dairy Sci, 101, 572–580.
There are 58 citations in total.

Details

Primary Language English
Subjects Veterinary Surgery
Journal Section Research Article
Authors

Orkun Babacan 0000-0003-0258-1825

Publication Date December 30, 2022
Published in Issue Year 2023Volume: 70 Issue: 1

Cite

APA Babacan, O. (2022). First detection of carbapenem resistance in Enterobacteriaceae isolates isolated from dairy cows’ mastitis infection in Türkiye. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 70(1), 65-74. https://doi.org/10.33988/auvfd.828306
AMA Babacan O. First detection of carbapenem resistance in Enterobacteriaceae isolates isolated from dairy cows’ mastitis infection in Türkiye. Ankara Univ Vet Fak Derg. December 2022;70(1):65-74. doi:10.33988/auvfd.828306
Chicago Babacan, Orkun. “First Detection of Carbapenem Resistance in Enterobacteriaceae Isolates Isolated from Dairy cows’ Mastitis Infection in Türkiye”. Ankara Üniversitesi Veteriner Fakültesi Dergisi 70, no. 1 (December 2022): 65-74. https://doi.org/10.33988/auvfd.828306.
EndNote Babacan O (December 1, 2022) First detection of carbapenem resistance in Enterobacteriaceae isolates isolated from dairy cows’ mastitis infection in Türkiye. Ankara Üniversitesi Veteriner Fakültesi Dergisi 70 1 65–74.
IEEE O. Babacan, “First detection of carbapenem resistance in Enterobacteriaceae isolates isolated from dairy cows’ mastitis infection in Türkiye”, Ankara Univ Vet Fak Derg, vol. 70, no. 1, pp. 65–74, 2022, doi: 10.33988/auvfd.828306.
ISNAD Babacan, Orkun. “First Detection of Carbapenem Resistance in Enterobacteriaceae Isolates Isolated from Dairy cows’ Mastitis Infection in Türkiye”. Ankara Üniversitesi Veteriner Fakültesi Dergisi 70/1 (December 2022), 65-74. https://doi.org/10.33988/auvfd.828306.
JAMA Babacan O. First detection of carbapenem resistance in Enterobacteriaceae isolates isolated from dairy cows’ mastitis infection in Türkiye. Ankara Univ Vet Fak Derg. 2022;70:65–74.
MLA Babacan, Orkun. “First Detection of Carbapenem Resistance in Enterobacteriaceae Isolates Isolated from Dairy cows’ Mastitis Infection in Türkiye”. Ankara Üniversitesi Veteriner Fakültesi Dergisi, vol. 70, no. 1, 2022, pp. 65-74, doi:10.33988/auvfd.828306.
Vancouver Babacan O. First detection of carbapenem resistance in Enterobacteriaceae isolates isolated from dairy cows’ mastitis infection in Türkiye. Ankara Univ Vet Fak Derg. 2022;70(1):65-74.