Research Article
BibTex RIS Cite

Yanık Yarası Oluşturulan Ratlarda Serisin Kaplı Gümüş Nanopartiküller ile Modifiye Edilen Fonksiyonel Poli (etilen tereftalat) Nanofiberlerin Parankimal Organlarda Meydana Getirdiği Histopatolojik Değişiklikler ve Oksidatif Stres Üzerine Etkisi

Year 2023, Volume: 70 Issue: 2, 131 - 140, 24.03.2023
https://doi.org/10.33988/auvfd.990270

Abstract

Bu çalışmada, serisin kaplı gümüş nanopartiküller ile modifiye edilen poli(etilen tereftalat)-g-poli(hidroksietil metakrilat) (PET-g-HEMA) nanofiber yara pansuman malzemesinin iç organlar, oksidatif stres ve biyokimyasal parametreler üzerindeki etkisinin araştırılması amaçlandı. Yanık model oluşturmak için, anestezi altındaki sıçanların sırtı tıraş edildikten sonra 100 °C suda bekletilen 2 cm çapa sahip yuvarlak dipli paslanmaz çelik çubuk ile 20 saniye temas ettirildi ve sıçanların sırtlarında 3. derece yanık yaraları oluşturuldu. Negatif kontrol (sargı bezi) grubunun (G1) yarası standart sargı bezi, pozitif kontrol grubunun (G2) yarası yanık yara malzemesi olarak kullanılan silvercel ürünü ve deney grubunun (G3) yarası da PET tabanlı örtü malzemesi ile kapatıldı. Çalışmada organlar (karaciğer, böbrek, kalp, pankreas, akciğer) üzerindeki histopatolojik değişikler, oksidatif stres (TAS, TOS, NO) ve biyokimyasal parametreler (serum; AST, ALT, GGT, CK, LDH, total protein, albümin, globülin, üre) incelendi. G1 gubu ile karşılaştırıldığında, plazma AST, ALT ve GGT düzeyleri G2 ve G3 gruplarında anlamlı olarak azaldığı bulundu (P<0.001). Plazma TAS seviyesi, G1 grubuna kıyasla G2 ve G3 gruplarında anlamlı bir şekilde artığı bulundu (P<0.05). G1 gubu ile karşılaştırıldığında karaciğer, böbrek ve pankreastaki dejeneratif ve nekrotik değişikliklerin G2 ve G3 gruplarında anlamlı olarak azaldığı bulundu (P<0.05). Sonuç olarak; sentezlenen PET tabanlı yara örtü malzemesinin ticari olarak kullanılma kapasitesine sahip olduğunu göstermektedir.

References

  • Abbas SAR, Abdullah AH, Abdul Sada HA, et al (2011): The effects of gold and silver nanoparticles on transaminase enzymes activities. Int J Chem Res, 3, 1-11.
  • Adeyemi OS, Adewumi I (2014): Biochemical Evaluation of Silver Nanoparticles in Wistar Rats. Int Sch Res Notices, 2014, 196091.
  • Adeyemi OS, Whiteley CG (2013): Interaction of nanoparticles with arginine kinase from Trypanosoma brucei: kinetic and mechanistic evaluation. Int J Biol Macromol, 62, 450-456.
  • Aliyev E, Sakallioglu U, Eren Z, et al (2004): The effect of polylactide membranes on the levels of reactive oxygen species in periodontal flaps during wound healing. Biomaterials, 25, 4633-4637.
  • Anandani JH (2010): Impact of thermal injury on hematological and biochemical parameters in burnt patients. Biosc Biotech Res Comm, 3, 97-100.
  • Atiyeh BS, Costagliola M, Hayek SN, et al (2007): Effect of silver on burn wound infection control and healing: Review of the literatüre. Burns, 33, 139-148.
  • Bahadır E, Sancar M, Tarhan GG, et al (2017): Burn-induced distant organ injury in rats and the effect of minocycline. Marmara Med J, 30, 137-145.
  • Barret JP, Jeschke MG, Herndon DN (2001): Fatty infiltration of the liver in severely burned pediatric patients: autopsy findings and clinical implications. J Trauma, 51, 736-739.
  • Bedlovičová Z, Strapáč I, Baláž M, et al (2020): A Brief Overview on Antioxidant Activity Determination of Silver Nanoparticles. Molecules, 25, 3191.
  • Benrath J, Zimmermann M, Gillardon F (1995): Substance P and nitric oxide mediate wound healing of ultraviolet photodamaged rat skin: evidence for an effect of nitric oxide on keratinocyte proliferation. Neurosci Lett, 200, 17-20.
  • Bhatia N, Kaur G, Soni V, et al (2016): Evaluation of the wound healing potential of isoquercetin-based cream on scald burn injury in rats. Burns Trauma, 4, 7.
  • Bulgrin JP, Shabani M, Chakravarthy D, et al (1995): Nitric oxide synthesis is suppressed in steroid-impaired and diabetic wounds. Wounds, 7, 48-57.
  • Cañedo-Dorantes L, Cañedo-Ayala M (2019): Skin Acute Wound Healing: A Comprehensive Review. Int J Inflam, 3706315.
  • Chernousova S, Epple M (2013): Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem Int Ed Engl, 52, 1636-1653.
  • Dhivya S, Padma VV, Santhini E (2015): Wound dressings – a review. Biomedicine (Taipei), 5, 22.
  • Evers LH, Bhavsar D, Mailänder P (2010): The biology of burn injury. Exp Dermatol, 19, 777–783.
  • Gonzalez ACDO, Costa TF, Andrade ZDA, et al (2016): Wound healing - A literature review. An Bras Dermatol, 91, 614–620.
  • Gupta A, Singh RL, Roghubir R (2002): Antioxidant status during cutaneous wound healing in immunocompromised rats. Mol Cell Biochem, 241, 1-7.
  • Gün Gök Z, Yiğitoğlu M, Vargel İ, et al (2021): Synthesis, characterization and wound healing ability of PET based nanofiber dressing material coated with silk sericin capped-silver nanoparticles. Mater Chem Phys, 259, 124043.
  • Hansbrough JF, Wikstrom T, Braide M, et al (1996): Neutrophil activation and tissue neutrophil sequestration in a rat model of thermal injury. J Surg Res, 61, 17–22.
  • Holm C, Hörbrand F, Von Donnersmarck GH, et al (1999): Acute renal failure in severely burned patients. Burns, 25, 171-178.
  • Hudspith J, Rayatt S (2004): First aid and treatment of minor burns. BMJ, 328, 1487-1489.
  • Jeschke MG, Barrow RE, Steven E, et al (1998): Mortality in Burned Children With Acute Renal Failure. Arch Surg, 133, 752-756.
  • Jeschke MG, Low JF, Spies M, et al (2001): Cell proliferation, apoptosis, NF-kappaB expression, enzyme, protein, and weight changes in livers of burned rats. Am J Physiol Gastrointest Liver Physiol, 280, 1314-1320.
  • Jeschke MG, Van Baar ME, Choudhry MA, et al (2020): Burn injury. Nat Rev Dis Primers, 6, 11.
  • Karimi H, Latifi N-A, Mehrjerdi AZ, et al (2020): Histopathological Changes of Organs (Lungs, Liver, Kidney, and Brain) After Using Two Types of AgiCoat and Acticoat Nanosilver Dressings on Deep Second-Degree Burn in Rat. J Burn Care Res, 41, 141-150.
  • Khansa I, Schoenbrunner AR, Kraft CT, et al (2019): Silver in Wound Care—Friend or Foe?: A Comprehensive Review. Plast Reconstr Surg Glob Open, 7, e2390.
  • Khalil AM, Shanab OM, Zannoni GF, et al (2018): Assessment of Hematological and Biochemical Markers in the Early post-Burn Period for Predicting Recovery and Mortality in Animals with Burn Injuries. J Clin Exp Pathol, 8, 343.
  • Khosroshahi AF, Rad JS, Kheirjou R, et al (2019): Skin Burns: Review of Molecular Mechanisms and Therapeutic Approaches. Wounds, 31, 308-315.
  • Kumandaş A, Karslı B, Kürüm A, et al (2020): Comparison of the effects of zinc-silver cream and Nigella sativa oil on wound healing and oxidative stress in the wound model in rats, Ankara Univ Vet Fak Derg, 67, 33-40.
  • Lee J, Shin D, Roh J-L (2018): Use of a pre-vascularised oral mucosal cell sheet for promoting cutaneous burn wound healing. Theranostics, 8, 5703-5712.
  • Lee KC, Joory K, Moiemen NS (2014): History of burns: The past, present and the future. Burns Trauma, 2, 169-180.
  • Lindholm C, Searle R (2016): Wound management for the 21st century: combining effectiveness and efficiency. Int Wound J, 13, 5-15.
  • Luna LG (1968): Manual of histologic staining methods of the armed forces institute of pathology, 3rd edn. McGraw- Hill, New York.
  • Marcato PD, De Paula LB, Melo PS, et al (2015): In Vivo Evaluation of Complex Biogenic Silver Nanoparticle and Enoxaparin in Wound Healing. J Nanomater, 2015, 439820.
  • Martínez-Higuera A, Rodríguez-Beas C, Villalobos-Noriega JMA, et al (2021): Hydrogel with silver nanoparticles synthesized by Mimosa tenuiflora for second-degree burns treatment. Sci Rep, 11, 11312.
  • Martyn JAJ, Greenblatt DJ, Hagen J, et al (1989): Alteration by burn injury of the pharmacokinetics and pharmacodynamics of cimetidine in children. Eur J Clin Pharmacol, 36, 361–367.
  • Matuschak GM (1996): Lung-liver interactions in sepsis and multiple organ failure syndrome. Clin Chest Med, 17, 83–98.
  • Mittendorfer B, Jeschke MG, Wolf SE, et al (1998): Nutritional hepatic steatosis and mortality after burn injury in rats. Clin Nutr, 17, 293-299.
  • Musalmah M, Fairuz AH, Gapor MT, et al (2002): Effect of vitamin E on plasma malondialdehyde, antioxidant enzyme levels and the rates of wound closures during wound healing in normal and diabetic rats. Asia Pac J Clin Nurt, 11, 448-451.
  • Orlowski P, Zmigrodzka M, Tomaszewska E, et al (2018): Tannic acid-modified silver nanoparticles for wound healing: the importance of size. Int J Nanomedicine, 13, 991-1007.
  • Paladini F, Pollini M (2019): Antimicrobial Silver Nanoparticles for Wound Healing Application: Progress and Future Trends. Materials, 12, 2540.
  • Pfurtscheller K, Petnehazy T, Goessler W, et al (2014): Transdermal uptake and organ distribution of silver from two different wound dressings in rats after a burn trauma. Wound Repair Regen, 22, 654–659.
  • Piccolo MT, Wang Y, Sannomiya P, et al (1999): Chemotactic mediator requirements in lung injury following skin burns in rats. Exp Mol Pathol, 66, 220–226.
  • Pothireddy S, Kaliki A, Mekapogu AR, et al (2016): Evaluation of the wound healing efficacy of chemical and phytogenic silver nanoparticles. IET Nanobiotechnol, 10, 340-348.
  • Pourhamzeh M, Mahmoudian ZG, Saidijam M, et al (2016): The Effect of Silver Nanoparticles on the Biochemical Parameters of Liver Function in Serum, and the Expression of Caspase-3 in the Liver Tissues of Male Rats. Avicenna J Med Biochem, 4, 7.
  • Rowan MP, Cancio LC, Elster EA, et al (2015): Burn wound healing and treatment: review and advancements. Crit Care, 19, 243.
  • Schäffer MR, Tantry M, Efron PA, et al (1997): Diabetes impaired healing and reduced wound nitric oxide synthesis: a possible pathophysiologic correlation. Surgery, 121, 513- 519.
  • Schwacha MG (2003): Macrophages and post-burn immune dysfunction. Burns, 29, 1-14.
  • Shedoeva A, Leavesley D, Upton Z, et al (2019): Wound Healing and the Use of Medicinal Plants. Evid Based Complement Alternat Med, 2019, 2684108.
  • Singh V, Devgan L, Bhat S, et al (2007): The pathogenesis of burn wound conversion. Ann Plast Surg, 59, 109–115.
  • Souto EB, Ribeiro AF, Ferreira MI, et al (2020): New Nanotechnologies for the Treatment and Repair of Skin Burns Infections. Int J Mol Sci, 21, 393.
  • Sulaiman FA, Adeyemi OS, Akanji MA, et al (2015): Biochemical and morphological alterations caused by silver nanoparticles in Wistar rats. J Acute Med, 5, 96-102.
  • Şehirli AÖ, Satılmış B, Tetik Ş, et al (2016): Protective effect of betaine against burn-induced pulmonary injury in rats. Ulus Travma Acil Cerrahi Derg, 22, 417-421.
  • Şener G, Sehirli Ö, Erkanlı G, et al (2004): 2-Mercaptoethane sulfonate (MESNA) protects against burn-induced renal injury in rats. Burns, 30, 557-564.
  • Tabakoğlu E, Durgut R (2013): Oxidatıve Stress in Veterınary Medicine and Effects in Some Important Diseases. AVKAE Derg, 3, 69-75.
  • Thiem B, Grosslinka O (2003): Antimicrobial activity of Rubus chamaemorus leaves. Fitoterapia, 75, 93-95.
  • Tiftik AM (1996): Klinik Biyokimya. Mimoza Yayınları, Konya, Turkey
  • Yamasaki K, Edington HDJ, McClosky C, et al (1998): Reversal of impaired wound repair in iNOS-deficient mice by topical adenoviral-mediated iNOS gene transfer. J Clin Invest, 101, 967-971.

Effects of functional poly(ethylene terephthalate) nanofibers modified with sericin-capped silver nanoparticles on histopathological changes in parenchymal organs and oxidative stress in a rat burn wound model

Year 2023, Volume: 70 Issue: 2, 131 - 140, 24.03.2023
https://doi.org/10.33988/auvfd.990270

Abstract

In this study, it was aimed to investigate the effect of a poly(ethylene terephthalate)-g-poly(hydroxyethyl methacrylate) (PET-g-HEMA) nanofiber wound dressing modified with sericin-coated silver nanoparticles (S-AgNPs) on internal organs, oxidative stress, and biochemical parameters. To establish a burn model, the backs of anesthetized rats were shaved and then third-degree burns were created with a round-bottomed stainless steel rod 2 cm in diameter kept in 100 °C water for 20 seconds. The wounds of the negative control group (G1) were covered with standard bandages; the wounds of the positive control group (G2) were covered with silvercel, used as burn wound material; and the wounds of the experimental group (G3) were covered with PET-based dressing material. Histopathological changes in organs (liver, kidneys, heart, pancreas, lungs), total oxidant status (TOS), total antioxidant status (TAS), nitric oxide (NO), and biochemical parameters (serum aspartate aminotransferase [AST], alanine aminotransferase [ALT], gamma glutamyl transpeptidase [GGT], creatine kinase, lactate dehydrogenase [LDH], total protein, albumin, globulin, urea) were examined. Compared with the G1 group, plasma AST, ALT, and GGT levels were found to be significantly decreased in G2 and G3 (P<0.001). Plasma TAS was found to be significantly increased in G2 and G3 compared to G1 (P<0.05). Compared to the G1 group, degenerative and necrotic changes in the liver, kidneys, and pancreas were found to be significantly reduced in G2 and G3 (P<0.05). In conclusion, this work demonstrates that the synthesized PET-based wound dressing material has the capacity to be used commercially.

References

  • Abbas SAR, Abdullah AH, Abdul Sada HA, et al (2011): The effects of gold and silver nanoparticles on transaminase enzymes activities. Int J Chem Res, 3, 1-11.
  • Adeyemi OS, Adewumi I (2014): Biochemical Evaluation of Silver Nanoparticles in Wistar Rats. Int Sch Res Notices, 2014, 196091.
  • Adeyemi OS, Whiteley CG (2013): Interaction of nanoparticles with arginine kinase from Trypanosoma brucei: kinetic and mechanistic evaluation. Int J Biol Macromol, 62, 450-456.
  • Aliyev E, Sakallioglu U, Eren Z, et al (2004): The effect of polylactide membranes on the levels of reactive oxygen species in periodontal flaps during wound healing. Biomaterials, 25, 4633-4637.
  • Anandani JH (2010): Impact of thermal injury on hematological and biochemical parameters in burnt patients. Biosc Biotech Res Comm, 3, 97-100.
  • Atiyeh BS, Costagliola M, Hayek SN, et al (2007): Effect of silver on burn wound infection control and healing: Review of the literatüre. Burns, 33, 139-148.
  • Bahadır E, Sancar M, Tarhan GG, et al (2017): Burn-induced distant organ injury in rats and the effect of minocycline. Marmara Med J, 30, 137-145.
  • Barret JP, Jeschke MG, Herndon DN (2001): Fatty infiltration of the liver in severely burned pediatric patients: autopsy findings and clinical implications. J Trauma, 51, 736-739.
  • Bedlovičová Z, Strapáč I, Baláž M, et al (2020): A Brief Overview on Antioxidant Activity Determination of Silver Nanoparticles. Molecules, 25, 3191.
  • Benrath J, Zimmermann M, Gillardon F (1995): Substance P and nitric oxide mediate wound healing of ultraviolet photodamaged rat skin: evidence for an effect of nitric oxide on keratinocyte proliferation. Neurosci Lett, 200, 17-20.
  • Bhatia N, Kaur G, Soni V, et al (2016): Evaluation of the wound healing potential of isoquercetin-based cream on scald burn injury in rats. Burns Trauma, 4, 7.
  • Bulgrin JP, Shabani M, Chakravarthy D, et al (1995): Nitric oxide synthesis is suppressed in steroid-impaired and diabetic wounds. Wounds, 7, 48-57.
  • Cañedo-Dorantes L, Cañedo-Ayala M (2019): Skin Acute Wound Healing: A Comprehensive Review. Int J Inflam, 3706315.
  • Chernousova S, Epple M (2013): Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem Int Ed Engl, 52, 1636-1653.
  • Dhivya S, Padma VV, Santhini E (2015): Wound dressings – a review. Biomedicine (Taipei), 5, 22.
  • Evers LH, Bhavsar D, Mailänder P (2010): The biology of burn injury. Exp Dermatol, 19, 777–783.
  • Gonzalez ACDO, Costa TF, Andrade ZDA, et al (2016): Wound healing - A literature review. An Bras Dermatol, 91, 614–620.
  • Gupta A, Singh RL, Roghubir R (2002): Antioxidant status during cutaneous wound healing in immunocompromised rats. Mol Cell Biochem, 241, 1-7.
  • Gün Gök Z, Yiğitoğlu M, Vargel İ, et al (2021): Synthesis, characterization and wound healing ability of PET based nanofiber dressing material coated with silk sericin capped-silver nanoparticles. Mater Chem Phys, 259, 124043.
  • Hansbrough JF, Wikstrom T, Braide M, et al (1996): Neutrophil activation and tissue neutrophil sequestration in a rat model of thermal injury. J Surg Res, 61, 17–22.
  • Holm C, Hörbrand F, Von Donnersmarck GH, et al (1999): Acute renal failure in severely burned patients. Burns, 25, 171-178.
  • Hudspith J, Rayatt S (2004): First aid and treatment of minor burns. BMJ, 328, 1487-1489.
  • Jeschke MG, Barrow RE, Steven E, et al (1998): Mortality in Burned Children With Acute Renal Failure. Arch Surg, 133, 752-756.
  • Jeschke MG, Low JF, Spies M, et al (2001): Cell proliferation, apoptosis, NF-kappaB expression, enzyme, protein, and weight changes in livers of burned rats. Am J Physiol Gastrointest Liver Physiol, 280, 1314-1320.
  • Jeschke MG, Van Baar ME, Choudhry MA, et al (2020): Burn injury. Nat Rev Dis Primers, 6, 11.
  • Karimi H, Latifi N-A, Mehrjerdi AZ, et al (2020): Histopathological Changes of Organs (Lungs, Liver, Kidney, and Brain) After Using Two Types of AgiCoat and Acticoat Nanosilver Dressings on Deep Second-Degree Burn in Rat. J Burn Care Res, 41, 141-150.
  • Khansa I, Schoenbrunner AR, Kraft CT, et al (2019): Silver in Wound Care—Friend or Foe?: A Comprehensive Review. Plast Reconstr Surg Glob Open, 7, e2390.
  • Khalil AM, Shanab OM, Zannoni GF, et al (2018): Assessment of Hematological and Biochemical Markers in the Early post-Burn Period for Predicting Recovery and Mortality in Animals with Burn Injuries. J Clin Exp Pathol, 8, 343.
  • Khosroshahi AF, Rad JS, Kheirjou R, et al (2019): Skin Burns: Review of Molecular Mechanisms and Therapeutic Approaches. Wounds, 31, 308-315.
  • Kumandaş A, Karslı B, Kürüm A, et al (2020): Comparison of the effects of zinc-silver cream and Nigella sativa oil on wound healing and oxidative stress in the wound model in rats, Ankara Univ Vet Fak Derg, 67, 33-40.
  • Lee J, Shin D, Roh J-L (2018): Use of a pre-vascularised oral mucosal cell sheet for promoting cutaneous burn wound healing. Theranostics, 8, 5703-5712.
  • Lee KC, Joory K, Moiemen NS (2014): History of burns: The past, present and the future. Burns Trauma, 2, 169-180.
  • Lindholm C, Searle R (2016): Wound management for the 21st century: combining effectiveness and efficiency. Int Wound J, 13, 5-15.
  • Luna LG (1968): Manual of histologic staining methods of the armed forces institute of pathology, 3rd edn. McGraw- Hill, New York.
  • Marcato PD, De Paula LB, Melo PS, et al (2015): In Vivo Evaluation of Complex Biogenic Silver Nanoparticle and Enoxaparin in Wound Healing. J Nanomater, 2015, 439820.
  • Martínez-Higuera A, Rodríguez-Beas C, Villalobos-Noriega JMA, et al (2021): Hydrogel with silver nanoparticles synthesized by Mimosa tenuiflora for second-degree burns treatment. Sci Rep, 11, 11312.
  • Martyn JAJ, Greenblatt DJ, Hagen J, et al (1989): Alteration by burn injury of the pharmacokinetics and pharmacodynamics of cimetidine in children. Eur J Clin Pharmacol, 36, 361–367.
  • Matuschak GM (1996): Lung-liver interactions in sepsis and multiple organ failure syndrome. Clin Chest Med, 17, 83–98.
  • Mittendorfer B, Jeschke MG, Wolf SE, et al (1998): Nutritional hepatic steatosis and mortality after burn injury in rats. Clin Nutr, 17, 293-299.
  • Musalmah M, Fairuz AH, Gapor MT, et al (2002): Effect of vitamin E on plasma malondialdehyde, antioxidant enzyme levels and the rates of wound closures during wound healing in normal and diabetic rats. Asia Pac J Clin Nurt, 11, 448-451.
  • Orlowski P, Zmigrodzka M, Tomaszewska E, et al (2018): Tannic acid-modified silver nanoparticles for wound healing: the importance of size. Int J Nanomedicine, 13, 991-1007.
  • Paladini F, Pollini M (2019): Antimicrobial Silver Nanoparticles for Wound Healing Application: Progress and Future Trends. Materials, 12, 2540.
  • Pfurtscheller K, Petnehazy T, Goessler W, et al (2014): Transdermal uptake and organ distribution of silver from two different wound dressings in rats after a burn trauma. Wound Repair Regen, 22, 654–659.
  • Piccolo MT, Wang Y, Sannomiya P, et al (1999): Chemotactic mediator requirements in lung injury following skin burns in rats. Exp Mol Pathol, 66, 220–226.
  • Pothireddy S, Kaliki A, Mekapogu AR, et al (2016): Evaluation of the wound healing efficacy of chemical and phytogenic silver nanoparticles. IET Nanobiotechnol, 10, 340-348.
  • Pourhamzeh M, Mahmoudian ZG, Saidijam M, et al (2016): The Effect of Silver Nanoparticles on the Biochemical Parameters of Liver Function in Serum, and the Expression of Caspase-3 in the Liver Tissues of Male Rats. Avicenna J Med Biochem, 4, 7.
  • Rowan MP, Cancio LC, Elster EA, et al (2015): Burn wound healing and treatment: review and advancements. Crit Care, 19, 243.
  • Schäffer MR, Tantry M, Efron PA, et al (1997): Diabetes impaired healing and reduced wound nitric oxide synthesis: a possible pathophysiologic correlation. Surgery, 121, 513- 519.
  • Schwacha MG (2003): Macrophages and post-burn immune dysfunction. Burns, 29, 1-14.
  • Shedoeva A, Leavesley D, Upton Z, et al (2019): Wound Healing and the Use of Medicinal Plants. Evid Based Complement Alternat Med, 2019, 2684108.
  • Singh V, Devgan L, Bhat S, et al (2007): The pathogenesis of burn wound conversion. Ann Plast Surg, 59, 109–115.
  • Souto EB, Ribeiro AF, Ferreira MI, et al (2020): New Nanotechnologies for the Treatment and Repair of Skin Burns Infections. Int J Mol Sci, 21, 393.
  • Sulaiman FA, Adeyemi OS, Akanji MA, et al (2015): Biochemical and morphological alterations caused by silver nanoparticles in Wistar rats. J Acute Med, 5, 96-102.
  • Şehirli AÖ, Satılmış B, Tetik Ş, et al (2016): Protective effect of betaine against burn-induced pulmonary injury in rats. Ulus Travma Acil Cerrahi Derg, 22, 417-421.
  • Şener G, Sehirli Ö, Erkanlı G, et al (2004): 2-Mercaptoethane sulfonate (MESNA) protects against burn-induced renal injury in rats. Burns, 30, 557-564.
  • Tabakoğlu E, Durgut R (2013): Oxidatıve Stress in Veterınary Medicine and Effects in Some Important Diseases. AVKAE Derg, 3, 69-75.
  • Thiem B, Grosslinka O (2003): Antimicrobial activity of Rubus chamaemorus leaves. Fitoterapia, 75, 93-95.
  • Tiftik AM (1996): Klinik Biyokimya. Mimoza Yayınları, Konya, Turkey
  • Yamasaki K, Edington HDJ, McClosky C, et al (1998): Reversal of impaired wound repair in iNOS-deficient mice by topical adenoviral-mediated iNOS gene transfer. J Clin Invest, 101, 967-971.
There are 59 citations in total.

Details

Primary Language English
Subjects Veterinary Surgery
Journal Section Research Article
Authors

Yaşar Şahin 0000-0001-5936-4210

Zehra Gün Gök 0000-0002-6024-9129

Mehmet Eray Alçığır 0000-0002-5165-5854

Miyase Çınar 0000-0003-3806-9938

Publication Date March 24, 2023
Published in Issue Year 2023Volume: 70 Issue: 2

Cite

APA Şahin, Y., Gün Gök, Z., Alçığır, M. E., Çınar, M. (2023). Effects of functional poly(ethylene terephthalate) nanofibers modified with sericin-capped silver nanoparticles on histopathological changes in parenchymal organs and oxidative stress in a rat burn wound model. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 70(2), 131-140. https://doi.org/10.33988/auvfd.990270
AMA Şahin Y, Gün Gök Z, Alçığır ME, Çınar M. Effects of functional poly(ethylene terephthalate) nanofibers modified with sericin-capped silver nanoparticles on histopathological changes in parenchymal organs and oxidative stress in a rat burn wound model. Ankara Univ Vet Fak Derg. March 2023;70(2):131-140. doi:10.33988/auvfd.990270
Chicago Şahin, Yaşar, Zehra Gün Gök, Mehmet Eray Alçığır, and Miyase Çınar. “Effects of Functional poly(ethylene Terephthalate) Nanofibers Modified With Sericin-Capped Silver Nanoparticles on Histopathological Changes in Parenchymal Organs and Oxidative Stress in a Rat Burn Wound Model”. Ankara Üniversitesi Veteriner Fakültesi Dergisi 70, no. 2 (March 2023): 131-40. https://doi.org/10.33988/auvfd.990270.
EndNote Şahin Y, Gün Gök Z, Alçığır ME, Çınar M (March 1, 2023) Effects of functional poly(ethylene terephthalate) nanofibers modified with sericin-capped silver nanoparticles on histopathological changes in parenchymal organs and oxidative stress in a rat burn wound model. Ankara Üniversitesi Veteriner Fakültesi Dergisi 70 2 131–140.
IEEE Y. Şahin, Z. Gün Gök, M. E. Alçığır, and M. Çınar, “Effects of functional poly(ethylene terephthalate) nanofibers modified with sericin-capped silver nanoparticles on histopathological changes in parenchymal organs and oxidative stress in a rat burn wound model”, Ankara Univ Vet Fak Derg, vol. 70, no. 2, pp. 131–140, 2023, doi: 10.33988/auvfd.990270.
ISNAD Şahin, Yaşar et al. “Effects of Functional poly(ethylene Terephthalate) Nanofibers Modified With Sericin-Capped Silver Nanoparticles on Histopathological Changes in Parenchymal Organs and Oxidative Stress in a Rat Burn Wound Model”. Ankara Üniversitesi Veteriner Fakültesi Dergisi 70/2 (March 2023), 131-140. https://doi.org/10.33988/auvfd.990270.
JAMA Şahin Y, Gün Gök Z, Alçığır ME, Çınar M. Effects of functional poly(ethylene terephthalate) nanofibers modified with sericin-capped silver nanoparticles on histopathological changes in parenchymal organs and oxidative stress in a rat burn wound model. Ankara Univ Vet Fak Derg. 2023;70:131–140.
MLA Şahin, Yaşar et al. “Effects of Functional poly(ethylene Terephthalate) Nanofibers Modified With Sericin-Capped Silver Nanoparticles on Histopathological Changes in Parenchymal Organs and Oxidative Stress in a Rat Burn Wound Model”. Ankara Üniversitesi Veteriner Fakültesi Dergisi, vol. 70, no. 2, 2023, pp. 131-40, doi:10.33988/auvfd.990270.
Vancouver Şahin Y, Gün Gök Z, Alçığır ME, Çınar M. Effects of functional poly(ethylene terephthalate) nanofibers modified with sericin-capped silver nanoparticles on histopathological changes in parenchymal organs and oxidative stress in a rat burn wound model. Ankara Univ Vet Fak Derg. 2023;70(2):131-40.