Research Article
BibTex RIS Cite

Effects of algae derived pure β–Glucan on In vitro rumen fermentation

Year 2023, Volume: 70 Issue: 4, 447 - 452, 29.09.2023
https://doi.org/10.33988/auvfd.1084176

Abstract

The major purpose of this study was to determine how varying doses of algae-derived pure β–glucan affected in vitro gas generation, volatile fatty acid (VFA) concentrations, methane production, and protozoa populations. Different doses of β–glucan [i.e., 0, 50, 100, 150, and 200 mg/kg feed (DM basis)] were applied to corn silage as experimental treatments. After 6–96 hours of incubation, the dose of 200 mg/kg of DM β–glucan reduced total gas production compared to control (P<0.01). The concentration of total VFA decreased quadratically (P<0.01) as the amount of β–glucan inclusion decreased (except for 200 mg/kg DM) when compared to the control group. The total VFA concentration was found to be the lowest (P<0.01) at 50, 100, and 150 mg/kg DM β–glucan than the other doses. Propionate and butyrate concentrations increased linearly (P<0.01) in the β–glucan supplemented groups, except for the 50 mg/kg DM dosage. When compared to the control group, all doses of β–glucans lowered acetate and the acetate: propionate ratio linearly and quadratically (P<0.01). The addition of β–glucans reduced the number of protozoa linearly (except at the lowest dose) and reduced the methane generation linearly and quadratically (P<0.01). The concentration of NH3-N did not differ (Linear, P=0.12; Quadratic, P=0.19) between treatments. The key findings were that β–glucan acted as a rumen modulator, and levels of more than 50 mg/kg of feed DM functioned as a potential methane regulator in the rumen due to reduced acetate and acetate to propionate ratio.

Ethical Statement

This study was carried out after the animal experiment was approved by Bursa Uludağ University Local Ethics Committee (Decision number: 2021-15/04, Approval date: 30.11.2021).

References

  • Amábile-Cuevas CF, Cárdenas-García M, Ludgar M (1995): Antibiotic-resistance. Am Sci, 83, 320-329.
  • AOAC (1990): Official Methods of Analysis. 15th ed. Association of Official Analytical Chemists, Washington, DC, USA.
  • Armstrong DG, Blaxter KL (1957): The utilization of acetic, propionic and butyric acids by fattening sheep. Br J Nutr, 11, 413-425.
  • Baker SK (1999): Rumen methanogens, and inhibition of methanogenesis. Aust J Agric Res, 50, 1293-1298.
  • Beauchemin KA, Kreuzer M, O’Mara F, et al (2008): Nutritional management for enteric methane abatement: a review. Aust J Exp Agric, 48, 21-27.
  • Boyne AW, Eadie JM, Raitt K (1957): The development and testing of a method of counting rumen protozoa. J Gen Microbiol, 17, 414-423.
  • Chen KL, Weng BC, Chang MT, et al (2008): Direct enhancement of the phagocytic and bactericidal capability of abdominal macrophage of chicks by beta-1,3-1,6-glucan. Poult Sci, 87, 2242-2249.
  • Cherdthong A, Seankamsorn A, Suriyapha C, et al (2018): Effect of beta-glucan supplementation on feed intake, digestibility of nutrients and ruminal fermentation in Thai native beef cattle. J Anim Physiol Anim Nutr, 102, 1509-1514.
  • Cox CM, Stuard LH, Kim S, et al (2010): Performance and immune responses to dietary beta-glucan in broiler chicks. Poult Sci, 89, 1924-1933.
  • Daniells S (2006): Beta-glucan from algae: ‘It’s a simpler, more bioavailable, and better priced product’. Avaliable at https://www.foodnavigator-usa.com. (Accessed December 28, 2021).
  • Donovan DC, Franklin ST, Chase CC, et al (2002): Growth and health of Holstein calves fed milk replacers supplemented with antibiotics or Enteroguard. J Dairy Sci, 85, 947-950.
  • Eicher SD, McKee CA, Carroll JA, et al (2006): Supplemental vitamin C and yeast cell wall beta glucan as growth enhancers in newborn pigs and as immunomodulators after an endotoxin challenge after weaning. J Anim Sci, 84, 2352-2360.
  • Finlay BJ, Esteban G, Clarke KJ, et al (1994): Some rumen ciliates have endosymbiotic methanogens. FEMS Microbiol Lett, 117, 157-162.
  • Grove AV, Kaiser CR, Iversen N, et al (2006): Digestibility of barley beta‐glucan in beef cattle. Proceedings of Western Section, J Anim Sci, 57, 367-369.
  • Khalkhane AS, Abbasi K, Zadeh FS, et al (2013): Effect of dietary beta-glucan supplementation on humoral and cellular immunologic factors in lambs. Global Vet, 11, 38-43.
  • Kido K, Tejima S, Haramiishi M, et al (2019): Provision of beta-glucan prebiotics (cellooligosaccharides and kraft pulp) to calves from pre- to post-weaning period on pasture. Anim Sci J, 90, 1537-1543.
  • Kinley RD, Vucko MJ, Machado L, et al (2016): The red macroalgae Asparagopsistaxiformis is a potent natural antimethanogenic that reduces methane production during in vitro fermentation with rumen fluid. Anim Prod Sci, 56, 282-289.
  • Kopecny J, Wallace RJ (1982): Cellular location and some properties of proteolytic enzymes of rumen bacteria. Appl Environ Microb, 43, 1026-1033.
  • Ma T, Tu Y, Zhang N, et al (2015): Effects of dietary yeast β‐glucan on nutrient digest‐ ibility and serum profiles in pre‐ruminant Holstein calves. J Integrative Agr, 14, 749-757.
  • Mao XF, Piao XS, Lai CH, et al (2005): Effects of β-glucan obtained from the Chinese herb Astragalus membranaceus and lipopolysaccharide challenge on performance, immunological, adrenal, and somatotropic responses of weanling pigs. J Anim Sci, 83, 2775-2782.
  • Martin C, Morgavi DP, Doreau M (2010): Methane mitigation in ruminants: from microbe to the farm scale. Anim, 4, 351-365.
  • Menke KH, Steingass H (1987): Schtzung des energetischen futterwerts aus der in vitro mit pansensaft bestimmten gasbildung und der chemischen analyse. II. Regressions gleichungen. Übers Tierernӓhrg, 15, 59-94.
  • Menke KH, Steingass H (1988): Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim Res Develop, 28, 7-55.
  • Newbold CJ, Lassalas B, Jouany JP (1995): The importance of methanogenesis associated with ciliate protozoa in ruminal methane production in vitro. Lett Appl Microbiol, 21, 230-234.
  • Orskov ER, McDonald I (1979): The estimation of protein degradability in the rumen from incubation measurement weighted according to rate of passage. J Agric Sci, 92, 499-507.
  • Polyorach S, Wanapat M, Cherdthong A (2014): Influence of yeast fermented cassava chip protein (YEFECAP) and roughage to concentrate ratio on ruminal fermentation and microorganisms using in vitro gas production technique. Asian-Australas J Anim Sci, 27, 36-45.
  • Ruiz-Herrera J, Larriba G (1995): High molecular weight precursors of glucans in Saccharomyces cerevisiae. Antonie van Leeuwenhoek, 68, 231-235.
  • Ushida K, Miyazaki A, Kawashima R (1987): Effect of defaunation on ruminal gas and VFA production in vitro. Jap J Zootech Sci, 57, 71-77.
  • Ushida K, Tokura M, Takenaka A, et al (1997): Ciliate protozoa and ruminal methanogenesis, in: Onodera R., Itabashi H., Ushida K., Yano H., Sasaki Y. (Eds.), Rumen Microbes & Digestive Physiology in Ruminants. Japan Scientific Societies Press, Tokyo, pp. 209-220.
  • Vasta V, Daghio M, Cappucci A, et al (2019): Invited review: Plant polyphenols and rumen microbiota responsible for fatty acid biohydrogenation, fiber digestion, and methane emission: Experimental evidence and methodological approaches. J Dairy Sci, 102, 3781-3804.
  • Vogels GD, Hoppe WF, Stumm CK (1980): Association of methanogenic bacteria with rumen ciliates. Appl Environ Microbiol, 40, 608-612.
  • Wang Z, Guo Y, Yuan J, et al (2008): Effect of dietary beta 1,3/1,6-glucan supplementation on growth performance, immune response and plasma prostaglandin E-2, growth hormone and ghrelin in weanling piglets. Asian-Australas J Anim Sci, 21, 707-714.
  • Wojcik R (2014): The effect of Leiber Beta-S on selected immunity indicators in calves. Acta Vet Brno, 83, 113-118.
  • Wolin MJ (1960): A theoretical rumen fermentation balance. J Dairy Sci, 43, 1452-1459.
  • Ząbek K, Milewski S, Wójcik R, et al (2013): Effect of β-1, 3/1, 6-D-glucan in diet on productivity and humoral and cellular defense mechanisms in sheep. Acta Vet Brno, 82, 141-146.
Year 2023, Volume: 70 Issue: 4, 447 - 452, 29.09.2023
https://doi.org/10.33988/auvfd.1084176

Abstract

References

  • Amábile-Cuevas CF, Cárdenas-García M, Ludgar M (1995): Antibiotic-resistance. Am Sci, 83, 320-329.
  • AOAC (1990): Official Methods of Analysis. 15th ed. Association of Official Analytical Chemists, Washington, DC, USA.
  • Armstrong DG, Blaxter KL (1957): The utilization of acetic, propionic and butyric acids by fattening sheep. Br J Nutr, 11, 413-425.
  • Baker SK (1999): Rumen methanogens, and inhibition of methanogenesis. Aust J Agric Res, 50, 1293-1298.
  • Beauchemin KA, Kreuzer M, O’Mara F, et al (2008): Nutritional management for enteric methane abatement: a review. Aust J Exp Agric, 48, 21-27.
  • Boyne AW, Eadie JM, Raitt K (1957): The development and testing of a method of counting rumen protozoa. J Gen Microbiol, 17, 414-423.
  • Chen KL, Weng BC, Chang MT, et al (2008): Direct enhancement of the phagocytic and bactericidal capability of abdominal macrophage of chicks by beta-1,3-1,6-glucan. Poult Sci, 87, 2242-2249.
  • Cherdthong A, Seankamsorn A, Suriyapha C, et al (2018): Effect of beta-glucan supplementation on feed intake, digestibility of nutrients and ruminal fermentation in Thai native beef cattle. J Anim Physiol Anim Nutr, 102, 1509-1514.
  • Cox CM, Stuard LH, Kim S, et al (2010): Performance and immune responses to dietary beta-glucan in broiler chicks. Poult Sci, 89, 1924-1933.
  • Daniells S (2006): Beta-glucan from algae: ‘It’s a simpler, more bioavailable, and better priced product’. Avaliable at https://www.foodnavigator-usa.com. (Accessed December 28, 2021).
  • Donovan DC, Franklin ST, Chase CC, et al (2002): Growth and health of Holstein calves fed milk replacers supplemented with antibiotics or Enteroguard. J Dairy Sci, 85, 947-950.
  • Eicher SD, McKee CA, Carroll JA, et al (2006): Supplemental vitamin C and yeast cell wall beta glucan as growth enhancers in newborn pigs and as immunomodulators after an endotoxin challenge after weaning. J Anim Sci, 84, 2352-2360.
  • Finlay BJ, Esteban G, Clarke KJ, et al (1994): Some rumen ciliates have endosymbiotic methanogens. FEMS Microbiol Lett, 117, 157-162.
  • Grove AV, Kaiser CR, Iversen N, et al (2006): Digestibility of barley beta‐glucan in beef cattle. Proceedings of Western Section, J Anim Sci, 57, 367-369.
  • Khalkhane AS, Abbasi K, Zadeh FS, et al (2013): Effect of dietary beta-glucan supplementation on humoral and cellular immunologic factors in lambs. Global Vet, 11, 38-43.
  • Kido K, Tejima S, Haramiishi M, et al (2019): Provision of beta-glucan prebiotics (cellooligosaccharides and kraft pulp) to calves from pre- to post-weaning period on pasture. Anim Sci J, 90, 1537-1543.
  • Kinley RD, Vucko MJ, Machado L, et al (2016): The red macroalgae Asparagopsistaxiformis is a potent natural antimethanogenic that reduces methane production during in vitro fermentation with rumen fluid. Anim Prod Sci, 56, 282-289.
  • Kopecny J, Wallace RJ (1982): Cellular location and some properties of proteolytic enzymes of rumen bacteria. Appl Environ Microb, 43, 1026-1033.
  • Ma T, Tu Y, Zhang N, et al (2015): Effects of dietary yeast β‐glucan on nutrient digest‐ ibility and serum profiles in pre‐ruminant Holstein calves. J Integrative Agr, 14, 749-757.
  • Mao XF, Piao XS, Lai CH, et al (2005): Effects of β-glucan obtained from the Chinese herb Astragalus membranaceus and lipopolysaccharide challenge on performance, immunological, adrenal, and somatotropic responses of weanling pigs. J Anim Sci, 83, 2775-2782.
  • Martin C, Morgavi DP, Doreau M (2010): Methane mitigation in ruminants: from microbe to the farm scale. Anim, 4, 351-365.
  • Menke KH, Steingass H (1987): Schtzung des energetischen futterwerts aus der in vitro mit pansensaft bestimmten gasbildung und der chemischen analyse. II. Regressions gleichungen. Übers Tierernӓhrg, 15, 59-94.
  • Menke KH, Steingass H (1988): Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim Res Develop, 28, 7-55.
  • Newbold CJ, Lassalas B, Jouany JP (1995): The importance of methanogenesis associated with ciliate protozoa in ruminal methane production in vitro. Lett Appl Microbiol, 21, 230-234.
  • Orskov ER, McDonald I (1979): The estimation of protein degradability in the rumen from incubation measurement weighted according to rate of passage. J Agric Sci, 92, 499-507.
  • Polyorach S, Wanapat M, Cherdthong A (2014): Influence of yeast fermented cassava chip protein (YEFECAP) and roughage to concentrate ratio on ruminal fermentation and microorganisms using in vitro gas production technique. Asian-Australas J Anim Sci, 27, 36-45.
  • Ruiz-Herrera J, Larriba G (1995): High molecular weight precursors of glucans in Saccharomyces cerevisiae. Antonie van Leeuwenhoek, 68, 231-235.
  • Ushida K, Miyazaki A, Kawashima R (1987): Effect of defaunation on ruminal gas and VFA production in vitro. Jap J Zootech Sci, 57, 71-77.
  • Ushida K, Tokura M, Takenaka A, et al (1997): Ciliate protozoa and ruminal methanogenesis, in: Onodera R., Itabashi H., Ushida K., Yano H., Sasaki Y. (Eds.), Rumen Microbes & Digestive Physiology in Ruminants. Japan Scientific Societies Press, Tokyo, pp. 209-220.
  • Vasta V, Daghio M, Cappucci A, et al (2019): Invited review: Plant polyphenols and rumen microbiota responsible for fatty acid biohydrogenation, fiber digestion, and methane emission: Experimental evidence and methodological approaches. J Dairy Sci, 102, 3781-3804.
  • Vogels GD, Hoppe WF, Stumm CK (1980): Association of methanogenic bacteria with rumen ciliates. Appl Environ Microbiol, 40, 608-612.
  • Wang Z, Guo Y, Yuan J, et al (2008): Effect of dietary beta 1,3/1,6-glucan supplementation on growth performance, immune response and plasma prostaglandin E-2, growth hormone and ghrelin in weanling piglets. Asian-Australas J Anim Sci, 21, 707-714.
  • Wojcik R (2014): The effect of Leiber Beta-S on selected immunity indicators in calves. Acta Vet Brno, 83, 113-118.
  • Wolin MJ (1960): A theoretical rumen fermentation balance. J Dairy Sci, 43, 1452-1459.
  • Ząbek K, Milewski S, Wójcik R, et al (2013): Effect of β-1, 3/1, 6-D-glucan in diet on productivity and humoral and cellular defense mechanisms in sheep. Acta Vet Brno, 82, 141-146.
There are 35 citations in total.

Details

Primary Language English
Subjects Veterinary Anatomy and Physiology
Journal Section Research Article
Authors

Ekin Sucu 0000-0003-1470-2751

Füsun Ak Sonat 0000-0002-3308-0778

Publication Date September 29, 2023
Published in Issue Year 2023Volume: 70 Issue: 4

Cite

APA Sucu, E., & Ak Sonat, F. (2023). Effects of algae derived pure β–Glucan on In vitro rumen fermentation. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 70(4), 447-452. https://doi.org/10.33988/auvfd.1084176
AMA Sucu E, Ak Sonat F. Effects of algae derived pure β–Glucan on In vitro rumen fermentation. Ankara Univ Vet Fak Derg. September 2023;70(4):447-452. doi:10.33988/auvfd.1084176
Chicago Sucu, Ekin, and Füsun Ak Sonat. “Effects of Algae Derived Pure β–Glucan on In Vitro Rumen Fermentation”. Ankara Üniversitesi Veteriner Fakültesi Dergisi 70, no. 4 (September 2023): 447-52. https://doi.org/10.33988/auvfd.1084176.
EndNote Sucu E, Ak Sonat F (September 1, 2023) Effects of algae derived pure β–Glucan on In vitro rumen fermentation. Ankara Üniversitesi Veteriner Fakültesi Dergisi 70 4 447–452.
IEEE E. Sucu and F. Ak Sonat, “Effects of algae derived pure β–Glucan on In vitro rumen fermentation”, Ankara Univ Vet Fak Derg, vol. 70, no. 4, pp. 447–452, 2023, doi: 10.33988/auvfd.1084176.
ISNAD Sucu, Ekin - Ak Sonat, Füsun. “Effects of Algae Derived Pure β–Glucan on In Vitro Rumen Fermentation”. Ankara Üniversitesi Veteriner Fakültesi Dergisi 70/4 (September 2023), 447-452. https://doi.org/10.33988/auvfd.1084176.
JAMA Sucu E, Ak Sonat F. Effects of algae derived pure β–Glucan on In vitro rumen fermentation. Ankara Univ Vet Fak Derg. 2023;70:447–452.
MLA Sucu, Ekin and Füsun Ak Sonat. “Effects of Algae Derived Pure β–Glucan on In Vitro Rumen Fermentation”. Ankara Üniversitesi Veteriner Fakültesi Dergisi, vol. 70, no. 4, 2023, pp. 447-52, doi:10.33988/auvfd.1084176.
Vancouver Sucu E, Ak Sonat F. Effects of algae derived pure β–Glucan on In vitro rumen fermentation. Ankara Univ Vet Fak Derg. 2023;70(4):447-52.