Research Article
BibTex RIS Cite

Exploring skull shape variation and allometry across different chicken breeds

Year 2025, Volume: 72 Issue: 1, 1 - 7, 01.01.2025
https://doi.org/10.33988/auvfd.1454398

Abstract

This study investigates skull shape variation and allometry among three different chicken breeds: Broiler, Lohman Brown, and Leghorn. Geometric morphometrics analysis was employed to analyse skull morphology, focusing on facial bones and the neurocranium. The study aims to understand how skull shape differs between these breeds and how it relates to size variation. Results show significant differences in skull morphology among the chicken breeds. Following PCA analysis, it was observed that PC1 explained 21.7% of the total variation. The PC1 values of Broiler chickens were notably lower compared to other breeds, indicating distinct morphological differences in their cranial shape. Increasing PC1 values corresponded to a more rounded head shape, with individuals possessing high PC1 values exhibiting a higher neurocranium. In contrast, Lohman Brown and Leghorn chickens show similarities in skull shape, with a more elongated appearance. Broiler chickens were found to be the smallest among the breeds studied, with statistical analysis confirming their distinguishability based on centroid size. In contrast, Lohman Brown and Leghorn chickens exhibited similar sizes, with no significant difference between them. Allometric analysis reveals that skull shape changes with size, particularly in the neurocranium and facial bones. These findings suggest that evolutionary adaptations and breeding practices have influenced the skull morphology of these chicken breeds. Overall, this study provides insights into the skull shape variation and allometry of different chicken breeds, highlighting the importance of considering both genetic and environmental factors in understanding morphological diversity in poultry.

Ethical Statement

As the samples were collected from slaughterhouse materials, ethics committee permission was not required for their use in the study.

Supporting Institution

This research received no grant from any funding agency/sector.

Thanks

We would like to thank Dr. Halil Can Kutay for his contribution to the collection of study materials.

References

  • Adams DC, Rohlf FJ, Slice DE (2004): Geometric morphometrics: ten years of progress following the ‘revolution’. Ital J Zool, 71, 5-16.
  • Boz İ, Manuta N, Özkan E, et al (2023): Geometric morphometry in veterinary anatomy. Veterinaria, 72, 15-27.
  • Dawson MM, Metzger KA, Baier DB, et al (2011): Kinematics of the quadrate bone during feeding in mallard ducks. J Exp Biol, 214, 2036-2046.
  • Demiraslan Y, Demircioğlu İ, Güzel BC (2024): Geometric analysis of mandible using semilandmark in Hamdani and Awassi sheep. Ankara Univ Vet Fak Derg, 71, 19-25.
  • Gündemir O, Koungoulos L, Szara T, et al (2023): Cranial morphology of Balkan and West Asian livestock guardian dogs. J Anat, 243, 951-959.
  • Hadžiomerović N, Gundemir O, Tandir F, et al (2023): Geometric and morphometric analysis of the auditory ossicles in the red fox (Vulpes vulpes). Animals, 13, 1230.
  • Hofer H (1952): Der Gestaltwandel des Schädels der Säugetiere und Vögel. mit besonderer Berücksichtigung der Knickungstypen und der Schädelbasis. Verh Anat Ges, 99, 102-26.
  • Jashari T, Kahvecioğlu O, Duro S, et al (2022): Morphometric analysis for the sex determination of the skull of the Deltari Ilir dog (Canis lupus familiaris) of Kosovo. Anat Histol Embryol, 51, 443-451.
  • Jung JY, Pissarenko A, Yaraghi NA, et al (2018): A comparative analysis of the avian skull: Woodpeckers and chickens. J Mech Behav Biomed Mater, 84, 273–280.
  • Klingenberg CP (2011): MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour, 11, 353-357.
  • Maga AM, Tustison NJ, Avants BB (2017): A population level atlas of Mus musculus craniofacial skeleton and automated image‐based shape analysis. J Anat, 231, 433-443.
  • Manuta N, Çakar B, Gündemir O, et al (2024): Shape and Size Variations of Distal Phalanges in Cattle. Animals, 14, 194.
  • Marugán‐Lobón J, Nebreda SM, Navalón G, et al (2022): Beyond the beak: brain size and allometry in avian craniofacial evolution. J Anat, 240, 197-209.
  • Mayr G (2020): Comparative morphology of the avian maxillary bone (os maxillare) based on an examination of macerated juvenile skeletons. Acta Zool, 101, 24-38.
  • Percival CJ, Devine J, Darwin BC, et al (2019): The effect of automated landmark identification on morphometric analyses. J Anat, 234, 917-935
  • Peterson AT (1993): Adaptive geographical variation in bill shape of scrub jays (Aphelocoma coerulescens). Am Nat, 142, 508-527.
  • Porto A, Rolfe S, Maga AM (2021): ALPACA: A fast and accurate computer vision approach for automated land-marking of three‐dimensional biological structures. Methods Ecol Evol, 12, 2129-2144.
  • Rolfe S, Pieper S, Porto A, et al (2021): SlicerMorph: An open and extensible platform to retrieve, visualize and analyse 3D morphology. Methods Ecol Evol, 12, 1816-1825.
  • Salvador RB, Rogers KM, Tennyson AJ, et al (2021): Feeding ecology analysis supports a marine diet in the extinct Chatham Island Duck (Anas chathamica). Emu, 121, 314-322.
  • Shatkovska OV, Ghazali M (2020): Integration of skeletal traits in some passerines: impact (or the lack thereof) of body mass, phylogeny, diet and habitat. J Anat, 236, 274-287.
  • Guangdi SI, Dong Y, Ma Y, et al (2015): Shape similarities and differences in the skulls of scavenging raptors. Zoolog Sci, 2015, 32,171-177.
  • Slice DE (2007): Geometric morphometrics. Annu Rev Anthropol, 36, 261-281.
  • Sophian A, Abinawanto A, Nisa UC, et al (2021): Morphometric analysis of Gorontalo (Indonesia) native chickens from six different regions. Biodiversitas, 22, 1757-1763.
  • Stange M, Núñez-León D, Sánchez-Villagra MR, et al (2018): Morphological variation under domestication: how variable are chickens? R Soc Open Sci, 5, 180993.
  • Szara T, Duro S, Gündemir O, et al (2022): Sex determination in Japanese Quails (Coturnix japonica) using geometric morphometrics of the skull. Animals, 12, 302.
  • Szara T, Günay E, Boz İ, et al (2023): Bill Shape Variation in African Penguin (Spheniscus demersus) Held Captive in Two Zoos. Diversity, 15, 945.
  • Wallace RS, Dubach J, Michaels MG, et al (2008): Morphometric determination of gender in adult Humboldt Penguins (Spheniscus humboldti). Waterbirds, 448-453.
Year 2025, Volume: 72 Issue: 1, 1 - 7, 01.01.2025
https://doi.org/10.33988/auvfd.1454398

Abstract

References

  • Adams DC, Rohlf FJ, Slice DE (2004): Geometric morphometrics: ten years of progress following the ‘revolution’. Ital J Zool, 71, 5-16.
  • Boz İ, Manuta N, Özkan E, et al (2023): Geometric morphometry in veterinary anatomy. Veterinaria, 72, 15-27.
  • Dawson MM, Metzger KA, Baier DB, et al (2011): Kinematics of the quadrate bone during feeding in mallard ducks. J Exp Biol, 214, 2036-2046.
  • Demiraslan Y, Demircioğlu İ, Güzel BC (2024): Geometric analysis of mandible using semilandmark in Hamdani and Awassi sheep. Ankara Univ Vet Fak Derg, 71, 19-25.
  • Gündemir O, Koungoulos L, Szara T, et al (2023): Cranial morphology of Balkan and West Asian livestock guardian dogs. J Anat, 243, 951-959.
  • Hadžiomerović N, Gundemir O, Tandir F, et al (2023): Geometric and morphometric analysis of the auditory ossicles in the red fox (Vulpes vulpes). Animals, 13, 1230.
  • Hofer H (1952): Der Gestaltwandel des Schädels der Säugetiere und Vögel. mit besonderer Berücksichtigung der Knickungstypen und der Schädelbasis. Verh Anat Ges, 99, 102-26.
  • Jashari T, Kahvecioğlu O, Duro S, et al (2022): Morphometric analysis for the sex determination of the skull of the Deltari Ilir dog (Canis lupus familiaris) of Kosovo. Anat Histol Embryol, 51, 443-451.
  • Jung JY, Pissarenko A, Yaraghi NA, et al (2018): A comparative analysis of the avian skull: Woodpeckers and chickens. J Mech Behav Biomed Mater, 84, 273–280.
  • Klingenberg CP (2011): MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour, 11, 353-357.
  • Maga AM, Tustison NJ, Avants BB (2017): A population level atlas of Mus musculus craniofacial skeleton and automated image‐based shape analysis. J Anat, 231, 433-443.
  • Manuta N, Çakar B, Gündemir O, et al (2024): Shape and Size Variations of Distal Phalanges in Cattle. Animals, 14, 194.
  • Marugán‐Lobón J, Nebreda SM, Navalón G, et al (2022): Beyond the beak: brain size and allometry in avian craniofacial evolution. J Anat, 240, 197-209.
  • Mayr G (2020): Comparative morphology of the avian maxillary bone (os maxillare) based on an examination of macerated juvenile skeletons. Acta Zool, 101, 24-38.
  • Percival CJ, Devine J, Darwin BC, et al (2019): The effect of automated landmark identification on morphometric analyses. J Anat, 234, 917-935
  • Peterson AT (1993): Adaptive geographical variation in bill shape of scrub jays (Aphelocoma coerulescens). Am Nat, 142, 508-527.
  • Porto A, Rolfe S, Maga AM (2021): ALPACA: A fast and accurate computer vision approach for automated land-marking of three‐dimensional biological structures. Methods Ecol Evol, 12, 2129-2144.
  • Rolfe S, Pieper S, Porto A, et al (2021): SlicerMorph: An open and extensible platform to retrieve, visualize and analyse 3D morphology. Methods Ecol Evol, 12, 1816-1825.
  • Salvador RB, Rogers KM, Tennyson AJ, et al (2021): Feeding ecology analysis supports a marine diet in the extinct Chatham Island Duck (Anas chathamica). Emu, 121, 314-322.
  • Shatkovska OV, Ghazali M (2020): Integration of skeletal traits in some passerines: impact (or the lack thereof) of body mass, phylogeny, diet and habitat. J Anat, 236, 274-287.
  • Guangdi SI, Dong Y, Ma Y, et al (2015): Shape similarities and differences in the skulls of scavenging raptors. Zoolog Sci, 2015, 32,171-177.
  • Slice DE (2007): Geometric morphometrics. Annu Rev Anthropol, 36, 261-281.
  • Sophian A, Abinawanto A, Nisa UC, et al (2021): Morphometric analysis of Gorontalo (Indonesia) native chickens from six different regions. Biodiversitas, 22, 1757-1763.
  • Stange M, Núñez-León D, Sánchez-Villagra MR, et al (2018): Morphological variation under domestication: how variable are chickens? R Soc Open Sci, 5, 180993.
  • Szara T, Duro S, Gündemir O, et al (2022): Sex determination in Japanese Quails (Coturnix japonica) using geometric morphometrics of the skull. Animals, 12, 302.
  • Szara T, Günay E, Boz İ, et al (2023): Bill Shape Variation in African Penguin (Spheniscus demersus) Held Captive in Two Zoos. Diversity, 15, 945.
  • Wallace RS, Dubach J, Michaels MG, et al (2008): Morphometric determination of gender in adult Humboldt Penguins (Spheniscus humboldti). Waterbirds, 448-453.
There are 27 citations in total.

Details

Primary Language English
Subjects Veterinary Anatomy and Physiology
Journal Section Research Article
Authors

Aycan Korkmazcan 0009-0008-7934-4960

Burak Ünal 0009-0009-6747-8395

Caner Bakıcı 0000-0003-2413-3142

Ozan Gündemir 0000-0002-3637-8166

Publication Date January 1, 2025
Submission Date March 17, 2024
Acceptance Date July 16, 2024
Published in Issue Year 2025Volume: 72 Issue: 1

Cite

APA Korkmazcan, A., Ünal, B., Bakıcı, C., Gündemir, O. (2025). Exploring skull shape variation and allometry across different chicken breeds. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 72(1), 1-7. https://doi.org/10.33988/auvfd.1454398
AMA Korkmazcan A, Ünal B, Bakıcı C, Gündemir O. Exploring skull shape variation and allometry across different chicken breeds. Ankara Univ Vet Fak Derg. January 2025;72(1):1-7. doi:10.33988/auvfd.1454398
Chicago Korkmazcan, Aycan, Burak Ünal, Caner Bakıcı, and Ozan Gündemir. “Exploring Skull Shape Variation and Allometry across Different Chicken Breeds”. Ankara Üniversitesi Veteriner Fakültesi Dergisi 72, no. 1 (January 2025): 1-7. https://doi.org/10.33988/auvfd.1454398.
EndNote Korkmazcan A, Ünal B, Bakıcı C, Gündemir O (January 1, 2025) Exploring skull shape variation and allometry across different chicken breeds. Ankara Üniversitesi Veteriner Fakültesi Dergisi 72 1 1–7.
IEEE A. Korkmazcan, B. Ünal, C. Bakıcı, and O. Gündemir, “Exploring skull shape variation and allometry across different chicken breeds”, Ankara Univ Vet Fak Derg, vol. 72, no. 1, pp. 1–7, 2025, doi: 10.33988/auvfd.1454398.
ISNAD Korkmazcan, Aycan et al. “Exploring Skull Shape Variation and Allometry across Different Chicken Breeds”. Ankara Üniversitesi Veteriner Fakültesi Dergisi 72/1 (January 2025), 1-7. https://doi.org/10.33988/auvfd.1454398.
JAMA Korkmazcan A, Ünal B, Bakıcı C, Gündemir O. Exploring skull shape variation and allometry across different chicken breeds. Ankara Univ Vet Fak Derg. 2025;72:1–7.
MLA Korkmazcan, Aycan et al. “Exploring Skull Shape Variation and Allometry across Different Chicken Breeds”. Ankara Üniversitesi Veteriner Fakültesi Dergisi, vol. 72, no. 1, 2025, pp. 1-7, doi:10.33988/auvfd.1454398.
Vancouver Korkmazcan A, Ünal B, Bakıcı C, Gündemir O. Exploring skull shape variation and allometry across different chicken breeds. Ankara Univ Vet Fak Derg. 2025;72(1):1-7.